
Modelling and measuring open-endedness

Susan Stepney1,2

1York Cross-disciplinary Centre for Systems Analysis
2Department of Computer Science, University of York, YO10 5DD

susan.stepney@york.ac.uk

Abstract

Generating open-ended (OE) systems is a major and as yet
unachieved goal of ALife research. Here I discuss aspects
of defining, modelling, and measuring OE. I apply a sim-
ple model of OE to itself, thereby expanding the concept, to
demonstrate how truly open and vast open-endedness is.

Introduction
Defining, categorising and measuring open-endedness (OE)
is a major goal of ALife research (Bedau et al., 2000;
Packard et al., 2019a,b), typically in the context of evolu-
tion. In the introduction to the Artificial Life journal spe-
cial issue on OE, Packard et al. (2019b) summarise recent
work, including the York and Tokyo categories, which use
concepts such as novelty, complexity, and ‘interestingness’
to capture the underlying intuitions of what OE is ‘really’.
Indeed, the definition of OE itself often devolves into def-
initions of properties that are ‘intuitively’ properties of OE
systems.

Here I discuss several issues arising from attempts to
model and measure OE in general, not restricted to a purely
evolutionary context. I describe a common 3-type approach
to categorising OE, including possible routes for moving
to higher types, providing examples of these kinds of cat-
egories from a range of disciplines. I next discuss the con-
sequences of this model of OE both for simulations and for
the definition of measures. I then apply this 3-type model to
itself, to extend it and to describe a fuller OE model of OE.
Finally, I suggest some routes forward, many of which are
substantial research topics in their own right.

Qualitative novelty
Three types of novelty
Hochberg et al. (2017) define biological innovation as ‘a
qualitatively new phenotypic trait that is associated with a
step departure from an evolutionary trend’. It is important
for OE definitions and measures to include this idea of quali-
tative change, a change in kind, not merely in number, where
‘more’ becomes ‘different’ (Anderson, 1972). Biology itself

distinguishes different kinds of change, such as variation,
speciation, and major transitions (Maynard Smith and Sza-
thmáry, 1995), the former one being mostly quantitative, the
latter two being mostly qualitative changes.

One approach to defining OE is in terms of the production
of a continual stream of novelty (Taylor et al., 2016); such
a definition further requires a definition of novelty (Crutch-
field, 1994). Novelty is something not seen before, or some-
thing unexpected from current trends; so it must be defined
with respect to (a model of) what has been seen before, and
what is expected.

Banzhaf et al. (2016) define novelty with respect both to a
model (the concepts used to capture the form, structure, and
behaviours of the entities in a particular system of instances)
and meta-model (the concepts used to build the model). The
approach is based on the notion that a sufficiently OE sys-
tem eventually moves outside its model (or, more precisely,
outside our model of it). They define three types of novelty:
type-0 novelty, variation, as novelty within the model (such
as new instances of a given type); type-1 novelty, innova-
tion, as novelty that changes the model (such as speciation,
new types of instances or behaviours); and type-2 novelty,
emergence, as novelty that changes the meta-model (new
concepts needed to define the model, such as a major tran-
sition). They require a system to exhibit at least continual
innovation (not merely continual variation) to be considered
OE, to capture the notion of qualitative change.

Taylor (2019) explores, expands, and modifies the
Banzhaf et al. (2016) approach: he renames the novelty
types as exploratory, expansive, and transformational; he de-
fines novelty with respect to the original rather than current
model; and he allows exploratory change to be included as a
form of OE.

These three types of novelty correspond quite closely with
Boden (1990, 2015)’s exploratory, combinatorial, and trans-
formative types of creativity.

Figure 1 summarises the various names used for these
concepts, including the ones used in the rest of this paper.



type 0 type 1 type 2

biology variation speciation major transition
Boden exploratory combinatorial transformative

Banzhaf et al. variation innovation emergence
Taylor exploratory expansive transformational

this paper variation innovation transformation

Figure 1: Various names used in the literature for three types
of novelty

Type-0: variation
Variation is exploration of a given model’s state space or
landscape. This space may be discrete or continuous, finite
or infinite. It might be bounded or unbounded. Boundedness
implies some edge or barrier, some maximum beyond which
one cannot go; unboundedness can move forever, sometimes
returning to the starting point (as on the surface of a sphere),
sometimes continuing to infinity (as walking along the num-
ber line). The space might be simple (such as a set of strings
modelling a genome) or highly complex (such as a model of
multiple complex phenotypes in a complex environment).

This concept of a boundary occurs across a wide range of
disciplines. If there is an edge or boundary, there may be
no other side, such as with a Moebius strip. The boundary
may be an illusion, retreating as it is approached, as in the
horizon. Or there may another side, but nothing there other
than the void, chaos, wilderness, madness, the unknown and
unknowable. The edge may be due to structural or resource
limitations: size, number of components, energy, or other
limits. The edge may be due to perceptual limitations of
individuals, such as humans being unable to perceive un-
aided IR/UV light wavelengths or sub-sonic/ultrasonic fre-
quencies. Different species of individuals may have differ-
ent perceptual boundaries. The edge may be due to cogni-
tive limitations of individuals, where the ‘other side’ is an
incomprehensible domain.

Exploration within such spaces finds ‘more of the same’,
variations on a theme. There are new instances, maybe of
unbounded number, but they all fit the current model.

Type-1: innovation
Innovation is a change in the state space or landscape that
necessitates a change to the model of the system. Chipping
away at an edge might lead to a breakthrough, demonstrat-
ing that it is instead a border between two domains, crossing
which can open up a new state space for exploration. Such
a border might be seen at the critical point of a phase transi-
tion, or at a bifurcation in a dynamical system.

A border might be created by bringing together disparate
domains: the created ‘borderlands’ itself becoming a region
ripe for innovation. The littoral region between land and sea,
the twilight zone between night and day, an ecotone between
ecological regions, a rite of passage between childhood and

adulthood, the crossroads, bridges and trade ports mediat-
ing contact between realms: these are all liminal regions of
change, mixing, confusion, and flux, with potential for di-
versity and creativity.

The so-called ‘edge of chaos’ (Langton, 1990) is such a
borderlands region, marking the border between the simple
domains of order and chaos.

Type-2: transformation
Transformation is a major change in the state space or land-
scape that necessitates a change to the meta-model of the
system. The exploration has transitioned through a gateway
into a new kind of domain, either discovered or created. This
new domain cannot be modelled with existing concepts; the
whole landscape is transformed in previously unrecognis-
able ways.

Literature has a whole subgenre of ‘portal fantasy’, with
its secret gardens, its other worlds. Often in such literature
if a person returns to the mundane world, they do so trans-
formed by their experiences. Alternatively, literary portals
may be one-way, and the traveller is fated to wander, po-
tentially through further portals, with no chance to return
home. Biology exhibits major transitions to higher level in-
dividuals, such as the transition to multicellularity, and other
transformative gateway events, such as the Great Oxidation
Event, when molecular oxygen became more abundant in
the atmosphere, enabling new ways of making a living. Such
events can transform individuals and environments, and are
typically not reversible.

Transitions between types
Type-0 variations are routinely explored in ALife simula-
tions. Innovations, and moreso transformations, are much
less common, and are more highly valued. However, these
types may not be rigidly separated, but change may move
from variation to innovation to transformation as it becomes
more extreme.

Exploration can ‘push the boundaries’, or ‘push the enve-
lope’. This may simply be exploring the space to the fullest
extent, as with Novelty Search (Lehman and Stanley, 2008).
Or it may be a way to make the current space larger, push-
ing the frontier, taming the wilderness and incorporating it
into the known and knowable. It can also be used to move
to a region that has a richer ‘adjacent possible’ (Kauffman,
2000), where innovation and transformation are more read-
ily achievable.

A major source of borderlands innovation comes from
‘structure clash’ or ‘culture clash’ of incompatible models.
The relatively simple models of each domain do not fit to-
gether; the borderlands model needed to reconcile them can
be richly innovative. The domains should be sufficiently dif-
ferent that creativity is required to combine them, yet suffi-
ciently similar that there is sufficient common ground for
such reconciliation.



Borders also function to keep domains separate, limiting
mixing and migration, allowing each to progress and change
relatively independently. Borders prevent homogenisation
and loss of diversity.

A borderlands region may start as a simple patchwork, but
may become sufficiently complex to become a transforma-
tive gateway. Taylor (2019) suggests that ‘the distinction be-
tween an expansive [innovative] and a transformational nov-
elty can by viewed as the difference between a door-opening
novelty in the same domain and a door-opening novelty in a
different domain’.

Packard et al. (2019b) describes major transitions as
‘characterized by an emergent hierarchy, with each new
level in the hierarchy consisting of a new population of re-
producing and evolving entities’ formed from lower level
entities that originally existed and reproduced indepen-
dently. Szathmáry (2015) breaks down a major transition
into three phases: the formation, maintenance, and transfor-
mation of populations of higher-level individuals. He notes
two types of major transition: fraternal, where the lower
level individuals are alike (of the same type), and egalitar-
ian, where they are of unalike (different types) and comple-
mentary.

Boden (2015) emphasises the importance of morphogen-
esis as a form of transformational creativity, with ‘the trans-
formation of one already existing pattern into another, and
then another, and yet another, and so on’, with the use
of ‘complex, iterative feedback loops’. If the iterative de-
velopmental process is, or can become, self-referential, it
opens the possibilities for computational reflection (Maes,
1987; Stepney and Hoverd, 2011; Hickinbotham and Step-
ney, 2016), where the model and meta-model can be actively
accessed and manipulated through the code; and it can in-
clude ‘strange loops’, tangled hierarchies where the levels
are not well-ordered (Hofstadter, 2007).

Consequences for OE simulations
Where the complexity resides
Rasmussen et al. (2001a) define dynamical hierarchies,
where the higher order individuals have new and distinct
properties not seen in their constituent parts. They note
that, in a given simulation, higher and higher order sys-
tems and their emergent properties require ‘an appropriate
increase of the object complexity of the primitives’. Ras-
mussen et al. (2001b) point out that this observation is in
some sense trivial: ‘Assume that we have a minimal rule set
that generates a particular dynamical hierarchy but only up
to order N . If we stay within this simulation framework,
it is necessary to add new rules to generate an additional
order (N + 1) of emergence. How can the system gener-
ate a new, higher level of behavior unless something new is
added to the elements?’. Each new major transition in bi-
ology, from replicating molecules up to societies, has been

based on the same underlying physics. Sub-symbolic Artifi-
cial Chemistries (Faulkner et al., 2018) have been developed
as an approach to produce elements with a set of rich emer-
gent properties.

Rasmussen et al. (2001b)’s need to add something new
to the primitive elements is due to their desire for all levels
of hierarchy to emerge purely from the elemental proper-
ties. Banzhaf et al. (2016) take a different approach, using
not only a lowest generative layer, but also allowing sim-
ulation coding shortcuts to be used to capture higher level
behaviours explicitly.

If individuals are to ‘push the boundaries’ of their own
perceptual, behavioural, and cognitive limits, there needs
to be something to make this worthwhile: something new
to perceive, something newly achievable by new behaviours
and thoughts. This implies the need for a great deal of com-
plexity in the environment. Taylor (2019) also points out
the crucial role of a complex environment, exploitable and
modifiable by the individuals.

Breaking the models
Although elemental complexity and shortcuts can be used
in this way, the main challenge for simulation is the need
to ‘break the model’ (Clark et al., 2005) in order to ex-
hibit innovative novelty, and to break the meta-model to ex-
hibit transformative novelty. Breaking the model potentially
breaks any measure based on that model. There are two dis-
tinct types of models at work in Banzhaf et al. (2016)’s ap-
proach. First is the engineering model: a prescriptive speci-
fication of the simulation as built and executed (the specifi-
cation of the genome and its expression, if you like). Second
is the scientific model: a descriptive model of the observed
outputs of the simulation (the model of the observed phe-
notypic structures and behaviours, if you like). What is ob-
served, what is considered salient, is a choice; different ob-
servational choices, different perspectives, result in different
models. Some models may include counterfactuals: ‘obser-
vations’ of entities or events that do not occur (Stepney and
Hickinbotham, 2021).

OE novelties are defined with respect to the scientific
model: what the simulation is emergently observed to do,
not what the code is explicitly designed to do. So flock-
ing can be observed as an emergent phenomenon (Reynolds,
1987), even though it is not explicitly encoded in the inter-
action rules.

So the scientific model can exhibit novel behaviours not
explicitly encoded in the simulation. However, Crutchfield
(1994) speaks of ‘intrinsic emergence’, where ‘there is a clo-
sure in which the patterns that emerge are important within
the system’. In the context of simulation, this means that
the observed novelties need to be captured in the engineer-
ing model. This allows them to be exploited by the simu-
lation, for example through higher level selection pressures,
for the generation of further higher level novelties. Banzhaf



et al. (2016) outline five stages to achieving full closure,
of modifying the engineering model, from today’s recogni-
tion outside the system with no change to the simulation, all
the way to the emergent novelty being somehow emergently
captured by the simulator itself. The latter stage is certainly
technically challenging, and requires self-modifying code:
new code to somehow incorporate and exploit the new nov-
elties.

Entities as code
This need for code change to capture emergent behaviours
implies that the entities in the simulation should not be sim-
ple structures (as in typical agent based simulations), but
should be the consequences of executing code. Here it is
important to distinguish (at least) two levels of code (Hick-
inbotham et al., 2016): there is the ‘physics’ level, the un-
derlying simulation engine, a form of interpreter animating
the simulation entities; and there is the ‘biology’ level, the
changing, varying, evolving individuals and environment,
that can include code interpreted by the physics engine. The
former code is fixed, and so should be minimised; the lat-
ter code can change, and needs to have the potential to
be as computationally powerful as possible, up to Turing-
complete.

Genetic Programming (GP) in its various forms (Banzhaf
et al., 1998; Miller, 2011) evolves programs. These pro-
grams are typically the desired end point of an optimisation
process: their fitness is evaluated by executing them. They
could also be the active entities in an ALife simulation. GP
can be used to evolve high level language expressions, or
low level assembly language programs.

EvoMachina is an evolutionary system comprising a num-
ber of active code-based machines that perform operations
like mutation, replication, and expression (Hoverd and Step-
ney, 2016). These machines are evolvable code entities.

Automata Chemistries are a form of Artificial Chemistry
(Banzhaf and Yamamoto, 2015) where ‘atoms’ of assem-
bly language instructions are strung into ‘molecules’ of as-
sembly language programs. The program string is the geno-
type; the behaviour of the executing program is the pheno-
type. Examples include Tierra (Ray, 1992), Avida (Adami
and Brown, 1994; Johnson and Wilke, 2004), Amoeba
World (Pargellis, 2001; Greenbaum and Pargellis, 2016),
and Stringmol (Hickinbotham et al., 2016, 2021; Clark et al.,
2017). These systems typically exhibit a great degree of
novelty, both innovative and transformative, as viewed in the
scientific model and as evolved into novel code molecules in
the engineering model.

Recent experiments with spatial Stringmol (Hickin-
botham et al., 2021) exhibit increasing dynamical complex-
ity as replicators evolve defences against parasites, parasites
evolve mechanism to overcome these defences, replicators
evolve defences against these new mechanisms, and so on.
These processes demonstrate innovation in the engineering

model, and transformation in the scientific model (Stepney
and Hickinbotham, 2020). Because the code is itself evolv-
ing, the resulting changed engineering model has to be ab-
stracted from that code. The analyses to detect these nov-
elties are currently performed outside the simulation itself
(Stepney and Hickinbotham, 2021). Abstracting minimal
such models is uncomputable if the models have Turing-
complete computational power (for example, the minimal
programs needed to specify Kolmogorov complexity are un-
computable).

In automata chemistries, the genome is the program, and
the phenotype is the behaviour observed from the direct ex-
ecution of that program. Another approach adding requisite
complexity to an ALife simulation is to have a non-linear
mapping from the genome to the phenotype; allowing the
mapping to evolve (Taylor, 2019) adds another source of
code-based complexity.

Generating the models

Explicit engineering. Some authors engineer features into
their systems to mimic an innovation or transformation. For
example, Sayama (2019) engineers a cardinality leap in the
size of the state space, from S to 2S , by explicitly facilitating
formation of higher order aggregate entities. Moreno and
Ofria (2019) describe their DISHTINY platform, which is
designed to study fraternal major transitions by providing
‘simple cell-like organisms with the ability and incentive to
unite into new individuals’.

Generative development. The developmental stage from
genome to phenotype provides a rich source of potential in-
novations and transformations, particularly if this mapping
itself evolves (Taylor, 2019).

Artificial Chemistries. An Artificial Chemistry (AChem)
explores its state space of possible ‘molecules’ in a gener-
ative manner: it has some underlying algorithm that gener-
ates new molecules from existing ones, through processes of
composition and decomposition.

In the classical definition of an AChem (Dittrich et al.,
2001), the form of this underlying algorithm is not broken
down further. MetaChem (Rainford et al., 2020) provides
a graph programming language approach to defining this
algorithm. So we can think of an AChem defined using
MetaChem as a graph model (algorithm) generating graph
instances (molecules). We can then take this further, and
have a meta-AChem, a graph meta-model generating graph
models (AChems). See figure 2.
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Figure 2: Conceptual figure: (a) families of molecules, represented as graphs; (b) the AChem algorithms that generate each
family of molecules; an algorithm is represented as a graph in the MetaChem framework; (c) a higher order AChem algorithm,
also represented as a graph, that generates the family of AChems as higher order molecules.

Consequences for OE measures
Quantitative change measures
Defining and using quantitative measures1 to demonstrate
the presence of OE is an active topic in the ALife commu-
nity. In addition to classical measures such as Levenshtein
edit distance, Shannon information, and Kolmogorov com-
plexity, there are others hand-designed for ALife systems.
Examples include those defined and used by Bedau et al.
(1998); Channon (2006); Droop and Hickinbotham (2012).
More recently, Dolson et al. (2019) have defined and imple-
mented a suite of measures relevant to ALife systems.

All these aim to measure features associated with OE sys-
tems and processes, with the suggestion that a continual in-
crease in the observed value of the measure implies an OE
system. Few if any of these measures are explicitly linked
to a particular model of OE; instead they are ‘intuitively’
thought to be linked to it.

Hintze (2019) critiques this use of continual increase of
a measure, demonstrating it is not sufficient by measuring
a specific trivial system, and showing it exhibits a con-
tinual increase in both diversity and complexity measures.
Hintze’s system comprises a population of strings drawn
from the alphabet {R,L, F}. The genome is the string; the
phenotype is the 2D path drawn by interpreting the string
as a LOGO-like program; the fitness is an explicit novelty
measure that rewards a path that is different from those of
other individuals in the population; mutation includes sym-
bol change, deletion and insertion. He calculates a diver-
sity measure, in terms of Levenshtein edit distance between

1Some authors use the term ‘metric’ to describe these. How-
ever, ‘metric’ has a specific mathematical definition, and many of
the measures in the literature either do not demonstrate that they
satisfy, or indeed fail to satisfy, that definition (particularly the
triangle inequality condition). I use the term ‘measure’ instead.
Although it too has a specific mathematical meaning, that is in a
different domain, and so unlikely to result in confusion or over-
interpretation of properties.

genomes, and a complexity measure, in terms of (a compres-
sion algorithm approximation of the uncomputable) Kol-
mogorov complexity of genomes. He finds that both these
measures would indicate that this trivial system is OE.

Hintze makes a compelling case, and yet it can be cri-
tiqued in its own right. He points out that diversity can be
measured at several levels – the alphabet, the genome, the
phenotype – and is minimal at some levels and greater at
others. He chooses to measure diversity and complexity at
the genome (string) level, yet biology defines innovation at
the phenotype level (Hochberg et al., 2017). (Of course, de-
vising a measure of phenotype divergence or complexity is
significantly more challenging than devising one for genome
strings.) Kolmogorov complexity is uncomputable, which is
why Hintze has to use an approximation; however, the ap-
proximation may well fail to capture exactly those ‘interest-
ing’ cases that have low Kolmogorov complexity but high
logical depth (Bennett, 1998). Measures should be com-
putable, else approximations that do not have the theoretical
properties of the stated measure will be needed. Further-
more, Kolmogorov complexity is a measure of randomness,
not of ‘complexity’ in the complexity science sense. A mea-
sure like Crutchfield (1994)’s statistical complexity, which
peaks at a value between pure order and pure chaos, would
be more relevant.

Hintze concludes from his results that the criterion of an
increasing measure is not sufficient for OE, and suggests
we need better definitions of complexity and diversity that
would reject his model. In terms of the 3-type model above,
we can say that Hintze’s system exhibits unbounded varia-
tion, but no innovation or transformation. By Banzhaf et al.
(2016)’s criterion, therefore, it does not exhibit OE; by Tay-
lor (2019)’s relaxation of that rule, that includes continual
variation, it does.



Qualitative change measures

The main problem with the kinds of measures mentioned
above is that they are measuring ‘Flatland’ (Abbott, 1884);
they are confined within a model (even if that model is not
always explicitly defined) and cannot see outside. They are
measuring type-0 variational change. However, innovation
and transformation change the model. We need measures
that can detect when such changes are occurring, or are
needed to adequately model the changing system. This is
non-trivial; it is no coincidence that Dolson et al. (2019)
state that they ‘would welcome a measurement of a system’s
potential to produce major transitions in individuality’, that
is, a measure of type-2 transformative change. But first, we
should look for measures of type-1 innovative change.

Innovation may occur in the borderlands. These situations
include ‘edge of chaos’ and other phase transitions (Badii
and Politi, 1997, §6.3). Phase transitions have an associated
order parameter, such as density or magnetisation in phys-
ical systems. The order parameter exhibits discontinuities
(in value or derivative) at the critical point of phase transi-
tion. What are the relevant order parameters for innovative
changes? Instead of looking for ever increasing measures,
should we look for discontinuities in the measures? Simu-
lation time does not look like a proxy for the independent
variable, like temperature of magnetic field, here. Those
variables exhibit one phase at low values and another phase
at high values, with complexity at the critical value; simula-
tion time moves from a relatively ordered phase to a critical
point of innovation, where change occurs, and a new system
results.

Another indication of model breakdown is divergence to
infinity in a measure. Consider the example of the statistical
complexity C of the logistic map, as examined by Crutch-
field and Young (1990); Crutchfield (1994). The initial mea-
sure is the size of a stochastic finite automaton (SFA) needed
to model an ensemble of strings of length L. Very regu-
lar strings, and also random strings, are modelled by small
SFAs. Complex strings require larger SFAs, as they have
more complex structure. The logistic map is shown to ex-
hibit maximum complexity in the regions where it is on the
border between periodic order and aperiodic chaos. At this
point the complexity measure diverges with L: ensembles
of longer and longer strings required larger and larger SFAs
to model them: there is fractal-like ‘structure on all scales’.
(Note this divergence is a function of system size, not of
simulation running time.) At this point, the model (SFA) is
no longer sufficient to capture the behaviour of the system,
and a model with greater computational power, by including
a stack, is needed. A transformation has occurred: the con-
cept of stack has been added to the meta-model. As further
transformations occur, the power of the model may need to
be increased further, up to eventually Turing-complete.

OE change measures
The measures described so far are all designed to work at the
instance level, where variation is occurring. Changes to the
model and meta-model occur when innovations and trans-
formations occur, and in a fully OE system would occur
autonomously. Measures of model change could therefore
detect innovations; measures of meta-model change could
detect transformations. Such measures would require that
the models and meta-models be explicitly cast in some for-
mal language, be comparable, and be measurable.

One potential approach is to the cast models and meta-
models in a graph-based language. This approach can sup-
port multi-level AChems (figure 2), is a flexible basis for
evolutionary systems (Atkinson et al., 2020, 2021) and has a
rich theoretical grounding in graph programming and graph
rewriting.

Another potential approach is to examine the domain
of Model Driven Architectures (Kleppe et al., 2003), and
adopt some of their well-developed approaches to formal
model transformation (typically expressed in UML-like lan-
guages).

OE models of OE
Banzhaf et al. (2016)’s 3-type model summarised above pro-
vides an initial model with which to define OE. It is based
on a landscape of possibilities (the state space, possibility
space), and how that landscape can change. Variation is ex-
ploring that landscape, discovering the possibilities; innova-
tion is modifying that landscape, finding new possibilities;
transformation is forming a new kind of landscape, with new
kinds of possibilities. Does it end there? If we think of this
as one instance of a range of possible models of OE, we can
try applying the concepts of this model to itself, to examine
whether it can be used to expand the definition of OE.

Variation. Banzhaf et al. (2016)’s OE model defines three
meta-levels: the instances (M0), the model (M1), and the
meta-model (M2). The levels 0, 1, 2 could be considered
as the beginning of variation, of the sequence 0, 1, 2, . . .;
could we explore the number of meta-levels: could we have
more meta-levels? In formal object oriented modelling, it
is usual to have four levels: these M0–2 and a meta-meta-
model (M3) (Kleppe et al., 2003, §8). It stops here, re-
quiring all elements of M3 to be defined in terms of M3
concepts: the meta-levels have to top out somewhere to be
implementable (and, admittedly, to be humanly comprehen-
sible). But maybe we should allow a model of OE to explore
multiple meta-levels, M4, M5, and so on.

If we have further meta-levels, we need to decide how
to define further novelties. Innovation is a change to M1,
induced by variation to M0. This change to M1 is a variation
of M1. If this variation to M1 further induces a change to M2
(that is, is transformational), this is a variation of M2. So
we can generalise. Let varN be a variation of MN (so plain



variation is var0). Then an innovN is a varN that induces a
varN+1 (plain innovation is innov0, resulting in var1), and a
transN is a varN that induces a varN+2 (plain transformation
is trans0, resulting in innov1 and var2).

So we could extend Banzhaf et al. (2016)’s definition of
OE to require ‘continual production of each var0<N ’.

We can also use this generalisation to help uncover and
measure further innovations and transformations, as they
have now been uniformly redefined as higher level varia-
tions: variations in the model and meta-model. We can use
our understanding and measures of variation at M0 (var0) to
define and measure var1, var2, . . . , varN , and we can use our
understanding of routes to generating innov0 and trans0 to
understand routes to higher level innovations and transfor-
mations.

Innovation and transformation. This extension is one
particular instance of a model of OE, built by varying the
one described by Banzhaf et al. (2016). Can it be varied
further? Can it be innovated? What is its meta-model? Its
meta-meta-model? What further innovations and transfor-
mations of these models and meta-models are possible, and
meaningful? These questions help illustrate how truly open
and vast OE is (or should be).

Change relative to what? I noted above that Banzhaf
et al. (2016) define change with respect to the current model,
whereas Taylor (2019) defines it with respect to the original
model. This gives rise to two very different concepts of OE.
If change with respect to the current model is used, the very
first glider seen in Conway’s Game of Life (Gardner, 1970;
Berlekamp et al., 1982) is surprising and novel, the model
is updated, and every subsequent glider is merely another
instance. On the other hand, if change with respect to the
original model is used, every instance of a glider is as sur-
prising and novel as the first. This may be an adequate ap-
proach for a system where each speciation event, each ma-
jor transition, is hard won, and worthy of regard. But in a
truly open system, multiple subsequent speciations are just
‘more of the same’, and not truly novel. Is a system that
exhibits only more and more speciations (or even only more
and more major transitions2) truly open-ended? The answer
is a philosophical choice; I would say ‘no’, and so follow the
Banzhaf et al. (2016) approach, as extended here.

2Banzhaf et al. (2016) present a meta-model (their fig.3) that
treats composite entities at different levels as different concepts,
and hence each major transition to a new level is a transformation.
Subsequent major transitions to the same level are not considered
as transformations, just innovations. That model is not ‘minimal’,
as the concept of ‘major transition’ could be introduced once only,
to cover all possible levels. However, that form was chosen specif-
ically because of the central role of major transitions in biology. A
different meta-model would not have to have that form.

Conclusion
I have discussed some issues of modelling and measuring
OE. These give rise to some suggestions for designing and
analysing simulations for investigating OE. Such a system
should at least include:
• a definition of the model of OE, with evidence it is open

at all levels
• a definition of the measures in the context of that model,

and a justification of how they capture OE properties
• measures of phenotypic structure and dynamics, not of

genomes
• measures as a function of system size
• measures that indicate when the model needs to

change/has changed, such as phase transitions and diver-
gences

• measures of model and meta-model variation
• computable measures
• mechanisms to change the models (preferably intrinsi-

cally, but at least extrinsically) and associated measures
• individuals (and environments) whose measured proper-

ties depend on executing and changeable code

These suggestions merely scratch the surface of OE. There
are many more research questions still to be resolved in
modelling and measuring fully OE systems. We need radical
new approaches to defining, generating, and studying them.
These approaches should recognise that OE is an unbounded
process, not some reachable end point.
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Maynard Smith, J. and Szathmáry, E. (1995). The Major Transi-
tions in Evolution. Oxford University Press.

Miller, J. F., editor (2011). Cartesian Genetic Programming.
Springer.

Moreno, M. A. and Ofria, C. (2019). Toward Open-Ended Fraternal
Transitions in Individuality. Artificial Life, 25(2):117–133.

Packard, N., Bedau, M. A., Channon, A., Ikegami, T., Rasmussen,
S., Stanley, K., and Taylor, T. (2019a). Open-Ended Evolu-
tion and open-endedness: Editorial introduction to the Open-
Ended Evolution I special issue. Artificial Life, 25(1):1–3.



Packard, N., Bedau, M. A., Channon, A., Ikegami, T., Rasmussen,
S., Stanley, K. O., and Taylor, T. (2019b). An Overview of
Open-Ended Evolution: Editorial Introduction to the Open-
Ended Evolution II Special Issue. Artificial Life, 25(2):93–
103.

Pargellis, A. N. (2001). Digital life behavior in the Amoeba world.
Artificial Life, 7(1):63–75.

Rainford, P. F., Sebald, A., and Stepney, S. (2020). MetaChem:
An Algebraic Framework for Artificial Chemistries. Artificial
Life, 26(2):153–195.

Rasmussen, S., Baas, N. A., Mayer, B., and Nilsson, M. (2001a).
Ansatz for dynamical hierarchies. Artificial Life, 7(4):329–
353.

Rasmussen, S., Baas, N. A., Mayer, B., and Nilsson, M. (2001b).
Defense of the Ansatz for dynamical hierarchies. Artificial
Life, 7(4):367–373.

Ray, T. S. (1992). An approach to the synthesis of life. In Artificial
Life II, pages 371–408. Addison-Wesley.

Reynolds, C. W. (1987). Flocks, Herds and Schools: A Distributed
Behavioral Model. In SIGGRAPH ’87, pages 25–34. ACM.

Sayama, H. (2019). Cardinality Leap for Open-Ended Evolu-
tion: Theoretical Consideration and Demonstration by Hash
Chemistry. Artificial Life, 25(2):104–116.

Stepney, S. and Hickinbotham, S. (2020). Innovation, variation,

and emergence in an automata chemistry. Artificial Life 2020,
Montreal, Canada (virtual), July 2020, 32:753–760.

Stepney, S. and Hickinbotham, S. (2021). What is a parasite?
defining reaction and network properties in an open ended
automata chemistry. Artificial Life 2021, Prague, Czech Re-
public (virtual), July 2021.

Stepney, S. and Hoverd, T. (2011). Reflecting on open-ended evo-
lution. In ECAL 2011, Paris, France, pages 781–788. MIT
Press.
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