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Abstract

We only find open-ended evolution (OEE) in the development
of human technology or in the evolution of life itself. The re-
search on OEE at ALIFE aims to discover a mechanism that
generates OEE automatically in a computer or machine. A
potential mechanism and the conditions required have been
discussed in three previous workshops. In this study, we pro-
pose and discuss man–machine interaction experiments as a
new OEE mechanism. The pertinent definition of OEE here
is whether we can continue to create new movements that
are distinguishable to us. We consider the development of
body movement patterns generated when Alter3 androids im-
itate each other and when Alter3 androids and humans imitate
each other. We use UMAP contraction and transfer entropy
to measure these changes and demonstrate that man–machine
communication is far more dynamic and complex than the
machine–machine interaction. We discuss how human sub-
jects can engender OEE via communication with the android.

OEE in man-machine interaction
Children are geniuses at devising new ways to play and are
typically always doing something different from the day be-
fore. We want to think of OEE in terms of these tempo-
ral and spatial scales: everyday life. In this study, we dis-
cuss whether mutual imitation can engender OEE. As has
been intensively studied by Jacqueline Nadel, Trevarthen,
and others, it is amazing to see how very creatively children
communicate. In an imitation game shared by J. Nadel, one
kid tried to use a bucket as a hat and the other kid mim-
icked his actions while laughing loudly (Nadel (2014)). The
first kid then switched to playing pretend with another ob-
ject, and then another. When we observe couples convers-
ing, synchronous action is often observed; e.g., when one
sips his/her coffee, the other takes a sip too. In the kids’ im-
itation game, the kids are conscious of their actions and the
other’s actions. In the case of the couple, the individuals are
not aware of their synchronous behaviors.

Synchronous communication, either conscious or uncon-
scious, is inherent in human communication. From the kids’
imitation game, we assume that the imitation may gener-
ate creativity. Concerning an OEE mechanism, we consider
whether metacognition during communication is important

for generating OEE. If the development of the brain follows
a similar path as biological evolution, then metacognition
during communication may be essential for generating OEE.
This is what we would like to explore toward the end of this
study.

Our methodology is as follows: Using humanoid robots
(androids), we examine the interaction between androids, an
android and a human, and human-human interaction. The
androids are programmed to imitate the human/android pose
in front of its eyes. The results are compared with those of
the human-human and human-android interactions.

We use a newly developed android called Alter3 (Ma-
sumori et al. (2021)), which we have been developing with
Hiroshi Ishiguro since 2016. Alter is an approximately 190
cm tall semi humanoid robot made of metal and motors. The
Alter series has evolved from Alter1, Alter2, and Alter3 in
terms of both hardware and software. The common feature
is that only the upper body is motile, which includes facial
expressions. Each Alter model is slightly different with re-
spect to the number, position, and range of the axes it drives.
However, they all share the same concept of emulating the
movements of the human body. Each axis has an operating
range of 256 steps and is driven by air pressure controlled by
a computer program. For example, Alter3 has 43 axes across
its entire body. The Alter3 has two eyes and is equipped with
cameras in each eye, through which it can detect people in
front of it and acquire their poses. It then tries to imitate
that pose. However, because the body shape and the range
of movement of the individual to be imitated are different, it
is not possible to achieve the same pose. In this case, Alter3
remembers poses it has imitated in the past and selects one to
imitate. For this study, the imitation between humanoids is
done by Alter2 and Alter3 (Fig. 1). Unfortunately, Alter2’s
eyes are not equipped with a camera. Thus, in experiments
where both Alter2 and Alter3 were used, we used fixed cam-
eras and motion sensors placed in front of Alters body to
reproduce the same condition as Alter2 and Alter3.



Figure 1: Example of mutual imitation between Alter2 (left)
and Alter3 (right).

Autonomy by Isolated Artificial Neurons
We give micro-autonomy to Alter3 by constantly applying a
fluctuation produced by an artificial neural network when it
executes a pose. This artificial neural network is a network
of 1,000 Izhikevich-type spiking neurons (Izhikevich (2003,
2004)) randomly connected to each other. From the network,
20 neurons are simultaneously applied to each joint with no
overlap. More precisely, the state of these 20 neurons is
normalized to the value of the output that moves each joint,
and then applied. The degree to which this neural fluctua-
tion is applied is given as a hyperparameter. Consequently,
the Alter3’s imitation not a perfect copy. This copying er-
ror is caused by: (1) physicality and (2) noise. To assess
the accuracy of the imitation, we calculate the optical flow
(Farnebäck (2003)) of our pose and compare it with the imi-
tation. The optical flow is defined as the difference between
the image of the opponent’s pose represented by a 20 × 20
lattice and the image of the previous pose. The autonomy
of Alter3 is characterized by two features: first, it does not
stop playing when there is no opponent to imitate in front
of it. In this case, Alter3 randomly selects a pose from its
memory and executes it. In addition, the memorized poses
can themselves be recombined with other poses in a genetic
manner. In essence each pose is a gene to which Darwinian
evolutionary dynamics are applied. The more poses that are
selected, the more they are remembered and the more similar
poses are remembered.

Alter3 extracts the skeletal structure of a person using
openpose (Cao et al. (2017)) if there is a person in the image
from the eye camera (or using motion sensors (Azure Kinect
DK) instead of using eye cameras and openpose to extract
it, for reproducing the same condition as Alter2 and Al-
ter3. Which method was used depends on the experiment.).
The skeletal structure is then transformed into the values as-

signed to its 43 axes and the Alter humanoid imitates the
pose of the person in the eye. However, this imitation is not
perfect, in part because the transformation of the image into
the 43 axes is not perfect (the depth of field is not calculated
properly), and partly because the Alter’s body is not fully
controllable and there is a time delay to that control.

Mutual Imitation Game
Mutual imitation is play that involves imitating each other.
This play, as demonstrated by children, is very creative
(Nadel (2014)). In this regard, there is an important pioneer-
ing study on imitation in mother–child interaction by Mur-
ray and Trevarthen (Murray (1985)), who later discussed
the development of this communication between parent and
child in relation to the intrinsic human rhythm. Alter also
imitates the pose of a person if it sees him/her in its eyes. We
consider four mutual play conditions: (1) between an Alter
and a person; (2) between Alters; (3) between two Alters
possessed by two different people, where possession means
that the person moves the Alter’s body as if it were his or her
own; and (4) between an Alter and itself in a mirror.

In the second condition, the imitation between humans
is done via possession of Alter3 and the Alter3’s body.
The procedure for possession is as follows: Using a head-
mounted display (Oculus Quest2), the human subject views
the image seen through the eyes of the Alter. The person’s
movements are simultaneously captured by the motion sen-
sor (Azure Kinect DK), which calculates the values assigned
to the 43 axes of the Alter and moves the Alter’s body corre-
spondingly. The subject would see the Alter’s hand through
the eyes of the Alter as if it were his or her own hand. This
gives the subject a sense of agency and ownership of the Al-
ter’s hand and body. The other human subject possesses the
other Alter in the same manner. Each subject looks through
its Alter’s eyes at the Alter’s physical counterpart. They are
then asked to perform mutual imitation.

Analysis of the Three conditions
The main analyses are performed using UMAP and transfer
entropy. UMAP is a method of dimensionality reduction in-
troduced by McInnes et al. (2018), which has excellent per-
formance with regard to python implementation speed and
facilitating data manipulation that the original data to place
similar groups of data close together. We use it to trace the
temporal evolution of the Alter’s body movements.

Transfer entropy (TE) is a method of calculating the
”upstream-downstream” comparisons of information be-
tween two or more time series (Schreiber (2000)). TE cal-
culates whether the past of A has the most information to
predict the future state of time series A, or whether the past
of another time series B has the most information, in an ex-
tended form of mutual information.

The results for each condition are as follows:



(1) Interaction between a human and an Alter
An Alter switches between three modes: (i) copying the
pose of the person in front of it; (ii) failing at the first mode,
the Alter selects a similar pose from memory and executes
it; (iii) if there is no person in front of it, the Alter randomly
selects a pose from a memory array and executes the pose.
When the Alter stores this pose away in the memory array,
it is added to the neural noise. By computing the UMAP for
mode (i) and memory mode (ii) and (iii), we can tell from
the UMAP that new poses are created (Fig. 2).

Figure 2: Example of the time development of motion pat-
terns. Blue dots represent poses generated with pose detec-
tion algorithm. Red dots represent poses recalled from the
memory. (Adapted from (Masumori et al. (2021)))

We notice that TE shows an oscillatory behavior; when an
Alter is successfully imitating a person, there is an entropy
flow from the person’s pose to the Alter’s pose. However,
when the imitation fails, the person often tries to imitate the
Alter’s poses, and entropy flows from the Alter to the per-
son (Masumori et al. (2021)). This is how mutual imitation
arises naturally.

It is interesting that in this case, the person enters into a
state of mutual imitation, even though he was not seeking
to imitate. However, the imitation pattern shifts, which may
explain the urge to break off the imitation if it continues for
a while. Taking the UMAP of these interactions, we see that
the complexity of the UMAP gradually increases. Why the
UMAP keeps producing new patterns is that people update
the patterns spontaneously. By playing the imitation game,
Alter can store new poses in his memory array. The changes
in the UMAP plotting are a reflection of the ever-changing
patterns of behavior, i.e., OEE.

We also asked a human subject to try to imitate the Al-
ter’s behavior. This is a pure mutual imitation game and the
UMAP generates complicated patterns step by step.

(2) Interaction between Alters
Mutual imitation between Alters did not complicate the de-
velopment of the UMAP very much. This is demonstrated
by computing the UMAP (Fig. 3). The obvious solution to
reciprocal imitation is to remain still in the same pose (cf.
Friston’s paradox of the dark room [Friston et al. (2012);
Froese and Ikegami (2013)]). Now, no mechanism has been
introduced to explicitly exit this state. Therefore, once an-
droids show a specific pose repeatedly and it is well imitated,
it can be maintained. In particular, if they do not access
a memory state, they will continuously react only to each
other.

Figure 3: Motion patterns when Alter3 interacts with Alter2
and when it interacts with humans. Red, green, and blue
dots represent poses when Alter3 interacts with Alter2, and
other colors represent those when it interacts with humans.

However, Alters can sometimes exit fixed points. As men-
tioned earlier, neural fluctuations are applied to each joint
when the Alter moves. The neural fluctuations are delivered
by adding up the state of the neurons taken from the com-
mon neural network. This neural network is randomly cou-
pled and has Hebb plasticity. Sometimes, all the neurons fire
in the same phase and a global synchronization state occurs.
This synchronous state causes large actions in the Alter, such
as raising both its hands at the same time. Yet each neuronal
network in each Alter are not coupled, the synchronous state
occurs spontaneously by accident.

Yet the UMAP does not evolve like in the case of human–
Alter interactions during which the Alter sometimes exits
the fixed-point state via the synchronous firing of neurons
and at least two imitating states emerge. In addition to this,



Alter2 and Alter3 have different body sizes and architec-
tures, with different degrees of freedom; thus, imitation can-
not be perfect. This is another mechanism that destabilizes
the fixed-point pose.

(3) Interaction between Alters possessed by
humans
Imitation between human beings does not, of course, fall on
fixed points or the like, and there is an impression that it
proceeds slowly and explores many poses. A detailed anal-
ysis is yet to be done, but one thing we can say is that the
UMAP representation can distinguish this form of imitation
from the imitation between Alters driven by autonomous
programs (Fig. 4).

Figure 4: Motion patterns of Alter3 possessed by human
and Alter3 with autonomous program. Red, green, and blue
dots represent poses of autonomous Alter3 interacting with
Alter2, and other colors represent poses of Alter3 possessed
by human, interacting with Alter2 possessed by human.

(4) Interaction with mirrors
The image in the mirror can be imitated perfectly without
any time delay as this involves the same body size and ar-
chitecture. Furthermore, the pose with the hands down sta-
bilizes immediately.

Discussions
There is a difference between the UMAP for android and
human-mediated mutual imitation: The UMAP tends to be-
come more complex when a human is involved. These ex-
periments were conducted on a scale of 30 minutes to an

hour with a small memory capacity (approx. 6 min). How-
ever, the situation may change if we use a larger memory
capacity and a longer timeframe for mutual imitation. At
the Barbican, there was a lengthy period when no one ap-
peared and Alter played with his own past poses, rather than
imitating these poses.

Therefore, from the experiment above, we conclude that
OEE is expected when: (1) an android has a set of memories
of past poses, (2) there is human interaction, and (3) there
is solitary play with memory without a human in front of
the Alter. In addition to these conditions, we propose that
mutual imitation is required to boost behavioral creativity.
Primarily, human intervention is critical because humans are
autonomous creatures and possess free will. This human au-
tonomy is a typical bottomlessness found in living systems.
Tom Froese posits that this bottomlessness is essential for
the emergence of OEE (Taylor et al. (2016)). Strazewski
proposes the same principle: a messy system can facilitate
OEE, and as such, a new degree of freedom (Strazewski
(2015)). Humans can be better defined as monsters with a
bottomless pit. cf. Michel Bitbol (Bitbol (2007)).

Secondly, when Alter retrieves memory, neural noise is
imposed, which is very important for producing creativity.
In this experiment, we used the Izhikevich model to create
a closed neural network with no input, from which connec-
tions were made to each axis. The network shows sponta-
neous neuronal firings and global synchronization. This is
what helps Alter to break out of its fixed pose. Random
noise has no such synchronization. Nevertheless, a simi-
lar pattern emerges between artificial brains with a similar
number of neurons and is a source of spontaneity. In this
case, the interaction between Alters has led to a diversity of
body movements, which often depends on this Izhikevich
cell model.

One last thing we want to mention is that imitating Al-
ter3’s poses can evoke emotions. As was discussed by Wal-
lon, imitating communication is emotional resonance (also
discussed in Nadel et al. (1999)). Because it evokes emo-
tions, an imitating game is not merely the reproducing of
poses and gestures but involves the creation of new commu-
nicative ways.
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