
Towards automatic generation of congestion control algorithms
by coevolving the environment

Teruto Endo1, Hirotake Abe1 and Mizuki Oka1

1University of Tsukuba, Tsukuba, Ibaraki 305-8577 Japan
enteru 2020@websci.cs.tsukuba.ac.jp

Abstract

We discuss the applicability of a co-evolutionary algorithm
of environments and agents for the automatic generation of
network congestion control algorithms. To co-evolve the net-
work simulation as an environment and the network conges-
tion control algorithm as an agent, we investigated methods
for controlling the difficulty of an environment and for gen-
erating and optimizing congestion control algorithms, which
are necessary for co-evolution. First, we examined the possi-
bility of controlling the difficulty level by varying the amount
of cross-traffic generation and the rate of packet loss, which
causes throughput degradation. Next, we tested the feasibility
of using grammatical evolution for the automatic generation
and optimization of congestion control algorithms. The re-
sults of these experiments demonstrated that the difficulty of
the environment can be controlled by varying the amount of
cross-traffic generation and the rate of packet loss. Addition-
ally, it was confirmed that grammatical evolution can be used
to optimize the network congestion control algorithm for en-
vironments with different parameter settings. In particular,
the network congestion control algorithm that we obtained in
an environment with high packet loss rates worked robustly
in other environments. We show that a co-evolutionary algo-
rithm of environments and agents can be used for the network
congestion control algorithm.

Introduction
Recently, a reinforcement learning algorithm called paired
open-ended trailblazer (POET), which co-evolves agents
and environments, has garnered a significant amount of re-
search attention (Wang et al., 2019). POET starts learning
through an agent paired with an environment, that are gen-
erated by environmental mutation. The agent evolves and
optimizes itself for the environment it is paired. The evalua-
tion function of the environment is made neither too difficult
nor too easy for the agents. Agents with high adaptability
are transferred to other environments where they evolve into
new pairs.

Thus, by using an algorithm such as POET, which co-
evolves agents and environments, we can automatically gen-
erate a wide variety of environments and acquire different
strategies for agents. An example of the application of
POET is the study of the co-evolution of game levels and

player characters(Dharna et al., 2020). However, there are
still few examples of real-world applications of POET-like
algorithms. In this study, we examine network congestion
control as a potential application of the co-evolutionary al-
gorithm of agents and environments.

Network congestion is the temporary concentration of a
large amount of data on an Internet connection. Gener-
ally on the Internet, users behave in their own self-interest
to maximize their communication, and several users con-
stantly compete for the communication bandwidth of shared
resources. Hence, a large amount of data temporarily flows
across the Internet, causing network congestion. Conges-
tion causes packet loss and delays, which can slow down
the transmission speed to the service and cause connection
problems. As congestion can cause disruptions in the use
of the Internet, it is necessary to take measures for its pre-
vention. To prevent congestion, network congestion control
algorithms are used to adjust the data transmission rate.

Congestion control algorithms decrease the amount of
packet transmission when congestion is detected and in-
crease the amount of transmission otherwise. Because it is
not possible to directly observe Internet connection condi-
tions, a congestion control algorithm uses the information
received by each terminal during communication to verify
the occurrence of congestion.

Network congestion control algorithms can be broadly
classified into loss-based and delay-based methods, depend-
ing on the method used to determine congestion(Al-Saadi
et al., 2019). Loss-based methods determine whether con-
gestion occurs based on packet loss and decide whether to
increase or decrease the amount of transmission. In contrast,
delay-based methods determine whether congestion occurs
based on the round-trip time of packets and then decide
whether to increase or decrease the transmission volume.

Research on network congestion control algorithms has
been ongoing for more than 40 years. However, a definitive
congestion control algorithm is yet to be developed. This
is due to the evolving Internet usage and connection pat-
terns. Additionally, existing network congestion control al-
gorithms cannot adapt to changes in the network environ-

ment (bandwidth, delay, packet loss, network topology, etc.)
because network congestion control algorithms are built us-
ing a rule-based approach. To overcome the limitations of
rule-based algorithms, a reinforcement learning-based algo-
rithm has recently been proposed(Jay et al., 2019; Li et al.,
2019). Attempts to use learning-algorithms and network
simulation environments in algorithms such as POET, which
co-evolve agents with environments, have the potential to
study congestion control algorithms more effectively.

Specifically, the co-evolution of the environment and the
agent may be used to discover new and efficient conges-
tion control algorithms. The conventional development of
network congestion control algorithms and the setting up of
network simulation environments have been based on the ex-
perience of researchers and the findings of their observations
of the Internet. Therefore, it cannot be denied that there is a
possibility of researcher bias in the algorithm development
process. Additionally, there is a limit to the number of algo-
rithms that can be constructed heuristically by researchers.
Thus, it is believed that more effective network congestion
control algorithms that are yet to be discovered. Therefore,
it is expected that algorithms, such as POET, can be used
to automatically discover congestion control algorithms that
have not been discovered owing to bias or other constraints.

However, to apply environment-agent co-evolutionary al-
gorithms to network congestion control, it is necessary to
investigate methods to control the degree of difficulty in
the environment and automatically generate and optimize
the network congestion control algorithm. In this study,
we address these two challenges and experimentally demon-
strate that it is possible to use network congestion con-
trol algorithms as an application of environment-agent co-
evolutionary algorithms. This work contributes to the study
of the open-ended evolution category “Interesting new kinds
of entities and interactions”(Packard et al., 2019) in terms of
generating new network congestion control algorithms and
network simulation environments through coevolution.

Environments and Agents in Network
Congestion Control

The environments and agents in our target application are
network simulation and congestion control algorithms, re-
spectively. In this study, we used a network simulator called
ns3gym(Gawłowicz and Zubow, 2019). ns3gym is an envi-
ronment that enables a network simulator called ns-3 (net-
work simulator 3)1 to be used with a reinforcement learning
toolkit called OpenAI Gym (Brockman et al., 2016). ns3
is an open-source network simulator developed for research
purposes that allows users to write network simulation sce-
narios and various parameter settings in C++ to perform sim-
ulations.

The evolution of algorithms requires the generation of

1https://www.nsnam.org/

programs that contain conditional branches. Therefore, we
use grammatical evolution (O’Neill and Ryan, 2001), which
guarantees that the generated programs are grammatically
correct. Examples of applications of grammatical evolution
are the construction of algorithms used for solving cutting
and packing problems(Burke et al., 2012) and optimizing
swarm behavior(Neupane and Goodrich, 2019). Addition-
ally, besides programs and mathematical expressions, any-
thing that has a grammatical structure can be evolved using
grammatical evolution. For example, grammatical evolution
is used in level generation for two-dimensional (2D) side-
scrolling action games(Shaker et al., 2012) or for optimizing
the structure of neural networks(Assunção et al., 2017). In
this study, we used PonyGE2(Fenton et al., 2017) to perform
grammatical evolution.

Control the difficulty of the environment
For the environment and the agent to co-evolve, the diffi-
culty of the environment must be controllable in gradual
steps. Therefore, we have to consider such parameters in the
network simulator, where we use the throughput of the en-
vironment to define the difficulty level, with higher through-
put corresponding to a lower difficulty level and vice-versa.
We consider two types of parameters to control the through-
put: the amount of cross-traffic generated and the packet loss
rate.

Cross-traffic, which is the first parameter, interferes with
the main communication. For example, in the case of a
server and a client that are in the main communication, the
traffic that arises because of the sending of data to the nodes
on the communication path between the server and client is
cross-traffic. Thus, when communication paths overlap, ad-
ditional pressure is placed on the bandwidth. In such cases,
if the communication data are not well controlled, conges-
tion will occur and the throughput will be reduced. There-
fore, it is possible to control the difficulty of the environment
by varying the amount of cross-traffic generated.

Figure1 shows a conceptual diagram of the network topol-
ogy in which the cross-traffic is generated. There are three
types of nodes: servers, clients, and relay nodes. The re-
lay node only relays data between the main traffic and the
cross-traffic and does not generate traffic. In the figure, the
red node indicates the node that generates the main traffic,
and blue and green nodes indicate nodes that generate cross-
traffic. The server at which the throughput is measured is
called the main server. The client that sends data to the main
server is called the main client.

Figure1-(a) shows a baseline topology of the network,
which comprises only one pair of servers that transmits the
main traffic, client nodes, and two relay nodes. Figures 1-
(b) and (c) show two methods of setting up a topology to
generate cross-traffic. In the former method (method 1), a
given number of server-client pairs is connected directly to
both ends of the relay nodes(shown in blue in the figure).

(a) baseline

(b) Method 1

(c) Method 2

(d) Method 1 and method 2 are used together.

Figure 1: Network topology in which the cross-traffic is generated. Squares indicate servers, circles indicate clients, and
hexagons indicate relay nodes. Red indicates nodes that generate main traffic, blue indicates nodes that directly connect to
relay nodes at both ends and generate cross-traffic, and green indicates nodes that connect relay nodes and generate cross-
traffic. (a) shows the baseline, and (b) illustrates method 1 in which server-node pairs are added directly to both ends of the
relay nodes. (c) illustrates method 2 in which server-node pairs are added between the relay nodes, and (d) illustrates the
scenario when method 1 and method 2 are used together.

In the later method (method 2), a given number of server-
client pairs is connected between the relay nodes (shown in
green in the figure). Methods 1 and 2 can be used together,
as shown in Figure1-(d).

A network topology with cross-traffic was automatically
created, based on the number of server-client pairs, using our
network generator. The network topology information gen-
erated by the network generator was loaded into the network
simulator, and subsequently, simulations were performed.

When packet loss, which is the second parameter, occurs,
it is necessary to resend and receive data. Consequently,
throughput decreases as re-transmitting the packets takes
time. The packet loss can be attributed to disconnection
in the case of wired networks and radio interference in the
case of wireless networks. This is especially likely to occur
in wireless applications. Therefore, the packet loss rate is
considered an effective parameter for controlling the diffi-
culty of the environment. Packet loss during the experiment
causes packet loss at all nodes in the network topology gen-
erated by the network generator.

Classical congestion control algorithms

To design an automatically generated network congestion
control algorithm, we refer to a relatively simple but widely
used classical network congestion control algorithm called
the additive increase and multiplicative decrease (AIMD) al-
gorithm(Peterson and Davie, 2011). The transmission rate is

determined using Equation 1.

x(t+ 1) =

{
x(t) + a (congestion is not detected)
x(t)× b (congestion is detected)

(1)
x(t) denotes the transmission rate at time t. When con-
gestion is not detected, the transmission rate increases by
a (a > 0); when congestion is detected, the transmission
rate decreases by b (0 < b < 1). The transmission rate is
determined by the determines the number of bytes that can
be sent out at any time, called the congestion window size.

While a number of AIMD-based algorithms have been
proposed, one of the most popular algorithms that use the
AIMD method is NewReno(Gurtov et al., 2012). The equa-
tion for updating the transmission rate of NewReno is as fol-
lows:

x(t+1) =

{
x(t) + 1

x(t) (congestion is not detected)
x(t)
2 (congestion is detected)

(2)
NewReno involves a linear increase in the transmission rate
when congestion is not detected, and the congestion window
size is halved when congestion is detected.

Evolving congestion control algorithms
Grammatical evolution is a method that employs generation
rules written in the Backus-Naur notation (BNF) as substitu-
tion rules from the genotype to phenotype. This method im-
proves the disadvantage of genetic programming; the func-
tions and programs generated using genetic programming
are not guaranteed to be grammatically correct.

1 <algorithm> ::= if state == OPEN:
2 <code1>
3 elif state == DISORDER:
4 <code2>
5 elif state == RECOVER:
6 <code2>
7 elif state == LOSS:
8 <code2>
9 else:

10 <code2>
11 <code1> ::= new_cwnd = <update>
12 | if <condition>:
13 new_cwnd = <update>
14 else:
15 new_cwnd = <update>
16 <code2> ::= new_cwnd = <update>
17 new_ssthresh = <update>
18 | if <condition>:
19 new_cwnd = <update>
20 new_ssthresh = <update>
21 else:
22 new_cwnd = <update>
23 new_ssthresh = <update>
24 <condition> ::= obs[<obs_index>]<comp_op>obs

[<obs_index>]
25 <update> ::= <update><arith_op><update>
26 | obs[<obs_index>]
27 | <num>
28 <obs_index> ::=

0|1|2|3|4|5|6|7|8|9|10|11|13|
29 <comp_op> ::= <|>|<=|>=|==|!=
30 <arith_op> ::= +|-|*|/|%
31 <num> ::= 1|2|3|4|5|6|7|8|9

Figure 2: Grammar for generating network congestion con-
trol algorithms using grammatical evolution

Considering we need a measure to evaluate the perfor-
mance of each agent (algorithm) when it is evolving, we also
used an average throughput as a fitness measure to evaluate
the performance of the congestion control algorithm using
the equation 3.

Fitness =
1

N

∑
t

throughputt (3)

Here, throughputt is the throughput measured at time t and
N is the number of times the throughput is measured. The
throughput was measured by a single server, and the average
throughput was calculated from the throughput measured at
regular time intervals during the simulation. The throughput
is defined as the amount of data received by the server per
second, using the equation 4.

throughputt =
(Bt −Bt−interval)× 8

interval
[bps] (4)

Here, Bt denotes the bytes of data received by the server
by time t and interval indicates the interval in seconds at

which the total amount of data received by the server is mea-
sured. The reason for considering 8 as the product is to con-
vert bytes to bits. By maximizing the fitness in equation 3,
we can evolve network congestion control algorithms to ob-
tain a higher throughput.

Next, Figure 2 shows the grammar for generating network
congestion control algorithms. We defined the grammar in
such a way that the AIMD algorithm can be generated. In
the grammar, “obs” indicates the observation information of
the simulation, and “OPEN,” “DISORDER,” “RECOVER,”
and “LOSS” in lines 1 through 7 of the grammar indicate the
following four congestion states, respectively.

• OPEN: Normal state

• DISORDER: State in which a duplicate ACK is re-
ceived（congestion may be occurring）

• RECOVER: Duplicate ACK received three
times（stronger suspicion of congestion occurring）

• LOSS: State in which ACK timeout is de-
tected（transmission is lost due to congestion）

“OPEN” indicates no congestion, “DISORDER” and “RE-
COVER” indicate that congestion may be occurring, and
“LOSS” indicates that transmission is lost due to conges-
tion. The grammar defines a method for updating the con-
gestion window size (new cwnd) and the slow start thresh-
old (new ssthresh) for these four congestion states. The up-
date method updates only four arithmetic operations or uses
conditional branching by if statements and four arithmetic
operations.

An example of the code generation process for the
“OPEN” state using this grammar is shown below.
1. Generate code starting from a non-terminal symbol
<algorithm> in the grammar.

if state == OPEN:
<code1>

2. Generate code for non-terminal symbol <code1>. The
code to be generated is determined from the value of the
gene because there are two codes that can be generated for
<code1>.

if state == OPEN:
new_cwnd = <update>

3. Generate code for non-terminals <update> as in 2.

if state == OPEN:
new_cwnd = <update> <arith_op> <update>

4. The process for determining the code generated from the
non-terminal symbols based on the genes is repeated. For
example, the following code is generated:

if state == OPEN:
new_cwnd = obs[5] + obs[6]

The network congestion control algorithm generated in
the example updates the congestion window size to the sum
of the two observed values obs[5] and obs[6] when the con-
gestion state is “ OPEN.” The larger the value of the conges-
tion window size, the more data can be sent, and the higher
the throughput, the more the algorithm evolves to allow the
congestion window size to be increased while adjusting the
congestion window size to prevent the occurrence of con-
gestion.

Experiments
In the experiments conducted in the present study, we exam-
ined the following three points.

1. Whether or not the difficulty of the environment can be
controlled when the amount of generated cross-traffic
generated and the rate of packet loss are varied

2. Whether it is possible to optimize the congestion control
algorithm using grammatical evolution

3. The applicability of congestion control to environment-
agent co-evolutionary algorithms

Throughout the experiments conducted in this study, the
parameters of the network simulation were set as: bandwidth
of 10 Mbps, delay of 45 ms, and simulation time of 10 s.
The average throughput was calculated from the through-
put measured every 0.1 s. During the simulation, we set the
main client to continue sending data to the main server for
as long as possible. In addition, the client generating the
cross-traffic was set to send packets to the paired server at a
transmission rate of 450 kpbs.

Controllability of the level of difficulty in
environment
First, we varied the amount of cross-traffic generation to
determine whether it was possible to control the difficulty
of the environment. Specifically, we examined whether
the average throughput could be reduced by increasing the
amount of cross-traffic generated. Using methods 1 and 2,
we increased the number of server-client pairs to be added,
thereby increasing the amount of cross-traffic generated.
The number of server-client pairs to be added at both ends
of the relay nodes (method 1) was varied from 1 to 2 and
finally to 3 (topology ID: m1 p1, m1 p2, and m1 p3, re-
spectively). We also varied the number of server-client pairs
to be added between relay nodes (method 2) from 1 to 2 and
finally to 3 (topology ID: m2 p1, m2 p2, and m2 p3, respec-
tively). Then, we measured the average throughput in these
environments. For comparison, we also measured the aver-
age throughput at the baseline of the experiment (topology

ID: base, where the number of nodes for methods 1 and 2 is
zero).

The simulation results are shown in Figure 3. The av-
erage throughput of the baseline was higher than that of
all the cross-traffic environments. Moreover, the average
throughput decreased as the number of pairs increased for
both methods 1 and 2. From this result, we can infer that the
difficulty of the environment can be controlled by varying
the amount of cross-traffic generated.

Figure 3: Changes in throughput in a cross-traffic-generated
environment. The topology ID on the horizontal axis indi-
cates the node placement method m(= 1 or 2) and the num-
ber of server-client node pairs p(= 1, 2, or 3).

Evolvability of congestion control algorithms
Next, we tested whether a packet-loss-generating environ-
ment was effective for evolving a network congestion con-
trol algorithm using grammatical evolution. A baseline en-
vironment with no cross-traffic was used as the experimental
environment. Network congestion control algorithms were
evolved using grammatical evolution in environments with
and without packet loss, and the changes in fitness between
the two were compared. The packet loss rates were set to
0.0, 0.001, 0.01, and 0.1. A packet loss incidence of 0.0
corresponds to an environment without packet loss. The pa-
rameter settings for grammatical evolution were as follows:
50 for the number of individuals, 200 for the gene length of
each individual, 20 for the number of mutations, and 900 for
the number of generations. In addition, the gene values for
each individual were initialized to include the update equa-
tion for the slow-start congestion window of NewReno. By
using the update equation of the NewReno algorithm, we in-
creased the probability of generating an algorithm with min-
imum performance.

The results are shown in Figure 4. When the fitness be-
tween the environments with and without packet loss was
compared, the fitness was observed to be better in the envi-

ronment without packet loss (packet loss rate = 0). This re-
sult can be attributed to the fact that the environment without
packet loss is more likely to produce throughput. Further-
more, considering the changes in fitness in the environment
without packet loss, the fitness became a constant value af-
ter the initial generation. In contrast, in an environment with
packet loss, the fitness gradually improved after the initial
generation. This can be attributed to the fact that the oc-
currence of packet loss provides an environment with the
level of difficulty necessary for the evolution of the algo-
rithm. Considering the case of a packet loss ratio of 0.01,
the algorithm for updating the congestion window of the first
generation became a simple additive formula as follows (the
following shows the updating method only in the “OPEN”
state).

Listing 1: first generation with packet loss rate 0.01

new_cwnd = obs[5] + obs[6]

By the 300th generation, the algorithm for updating the
congestion window evolved into a more complex update for-
mula that included conditional statements:

Listing 2: 300th generation with packet loss rate 0.01

if obs[8] != obs[6]:
new_cwnd = obs[8] / obs[5] + obs[6] % 6

else:
new_cwnd = obs[4]

Next, we show a part of the two algorithms evolved for
the 300th generation with packet loss rates of 0.001 and 0.1.

Listing 3: 300th generation with packet loss rate 0.001

new_cwnd = obs[8] * obs[7]

Listing 4: 300th generation with packet loss rate 0.1

if obs[5] != obs[6]:
new_cwnd = obs[7]

else:
new_cwnd = obs[4] / 1

For a packet loss rate of 0.001, the result of multiplying the
two observed values was used as the congestion window
size. In contrast, the packet loss rate of 0.1 used the ob-
served value after conditional branching as the congestion
window size. These network congestion control algorithms
have evolved to possess different characteristics for each en-
vironment. However, it is difficult to clearly explain the
difference between the fitness values of the generated algo-
rithms. Generating an algorithm that is rational and human-
understandable is a challenge to be addressed in future.

Applicability to co-evolution of environment and
agent
Finally, we tested the applicability of the network congestion
control algorithms to environment-agent co-evolutionary al-

Figure 4: Changes in best fitness of each generation in the
no packet loss (loss rate = 0.0) and packet loss (loss rate =
0.001, 0.01, 0.1) environments

gorithms. In this experiment, we evaluated the fitness of
the three network congestion control algorithms described
in Section “Evolvability of congestion control algorithm”.
That is, the 300th generation of the network congestion con-
trol algorithms with packet loss rates evolving at loss rates
of 0.001, 0.01, and 0.1.

We evaluated these algorithms in environments with and
without cross-traffic. In environments without cross-traffic,
NewReno and an algorithm that always uses a constant value
as the congestion window size (the upper limit of the con-
gestion window size in our experiments) were used as base-
lines. In environments with cross-traffic, we verified the ef-
ficiency of these algorithms (evolved in environments with-
out cross-traffic) in the cross-traffic environment. For the
network without cross-traffic, we used baseline topology.
For the generation of network topology with cross-traffic,
we used both methods 1 and 2. Specifically, we used a net-
work topology where the number of server-client pairs for
method 1 was one, and that of method 2 was three. For each
network, the simulation was conducted for packet loss rates
of 0.0, 0.1, 0.05, 0.01, 0.005, 0.001, and 0.0005. For each
parameters, we conducted 25 trials by making staring time
of the main flow slightly varied in 0.01 second step.

Figure 5 shows the results2. In comparing the fitness of
the algorithms evolved with a packet loss rate of 0.001 and
0.01 without cross-traffic and with cross-traffic, the fitness of
the algorithms without cross-traffic is higher for all packet
loss rates. Hence, we can say that these algorithms have
been optimized for the environment without cross-traffic,
which is the environment at the time of evolution.

Similarly, in regard to the best algorithms under packet
loss rate 0.001 and 0.01 in an environment without cross-
traffic, we found that the algorithms with the best fitness

2Some results with cross-traffic and packet loss rate of 0.05 and
0.1 are excluded from the figure because network simulations could
not be completed because of irregular stops in ns3.

Figure 5: Relationship between packet loss rate and fitness of each algorithm: Average fitness are calculated from the results
of 25 trials. Error bars show standard deviations. The Figure-(left) shows results in the environment without cross-traffic.
This shows the results of comparing baseline algorithms(NewReno, const) with algorithms evolved in an environment with
packet loss rates of 0.001, 0.01, and 0.1. The Figure-right shows results in the environment with cross-traffic. This shows the
performance of the algorithms evolved in an environment without cross-traffic in an environment with cross-traffic. In some
environments with cross-traffic and a packet loss rate of 0.1 and 0.05, a network simulation could not be completed because of
an irregular stop of ns3. Those faulty results are excluded.

were those that evolved in the same packet loss rate envi-
ronment as that used for evolution. Hence, we can say that
the algorithm has evolved such that it is optimized for each
packet loss rate environment.

However, a very simple algorithm with a constant value as
the congestion window size (const of 5) had the same level
of fitness as the other algorithms. This result indicates that
the simulation environment may not be able to reflect the
characteristics of the Internet. This suggests that the algo-
rithm evolved in the experiment is adapting to a special en-
vironment that is different from the Internet. Therefore, the
future challenge is to generate an algorithm that performs
better than existing algorithms such as NewReno in an envi-
ronment that reflects the characteristics of the Internet.

In contrast, in an environment with cross-traffic, the av-
erage and standard deviation of fitness shows that the algo-
rithm evolved with a packet loss rate of 0.1 has a stable fit-
ness for all the evaluated environments. This result suggests
that the algorithm evolved in a difficult environment can be
an effective algorithm for other environments. Interestingly,
the algorithm that evolved in a more favorable environment
without cross-traffic worked well in a relatively challeng-
ing environment with cross-traffic. This may be because a
packet loss ratio of 0.1 created a rather harsh environment
even in the absence of cross-traffic.

This result suggests the feasibility of our approach re-
garding the network congestion control algorithm using a
co-evolutionary algorithm of environments and agents such

as POET.

Conclusion
We examined the applicability of an environment-agent co-
evolutionary algorithm to network congestion control algo-
rithms. We found that the amount of cross-traffic generation
and the rate of packet loss are useful for controlling the diffi-
culty of the environment, which is necessary when using an
environment-agent co-evolutionary algorithm. In addition,
grammatical evolution was found to be useful for optimiz-
ing the congestion control algorithm, which corresponds to
the optimization part of the agent. Finally, we show that
the co-evolutionary algorithm of the environment and agent
can be used for the congestion control algorithm. This result
is a contribution to open-ended evolution research in that
it shows that a co-evolutionary framework such as POET
can be adapted to network congestion control algorithms
(agents) and network simulations (environments).

In the future, we would like to extend our work to use
frameworks such as POET to automatically co-evolve both
the environment and the algorithm. Eventually, we aim
to automatically generate algorithms and environments that
will surpass those already discovered by humans through co-
evolution. The usefulness of the co-evolution of an environ-
ment and agent also lies in the fact that the environment is
generated according to the progress of the agent’s optimiza-
tion. In the past, when network congestion control algo-
rithms were evaluated, the parameters of the environment

were adjusted by a researcher. Hence, the more the number
of parameters used, the more the level of difficulty in making
appropriate adjustments. Therefore, there was a limit to the
number of environments that could be used for evaluation.
However, by using the co-evolutionary algorithm of envi-
ronments and agents, we could search for parameter settings
with an appropriate level of difficulty for each algorithm.
This is expected to lead to the automatic discovery of new
parameter settings for environments that are useful for verifi-
cation. Simultaneously, by automatically generating and op-
timizing algorithms in the various environments generated,
new and useful network congestion control algorithms can
be discovered.

In addition, we believe that it is possible to generate a
wider variety of network congestion control algorithms by
improving the grammar used in grammatical evolution. In
the grammar used in the present study, the method of up-
dating the congestion window is defined inside a prede-
fined conditional branch. Therefore, there is a limit to the
number of congestion control algorithms that can be gener-
ated. Removing these restrictions allows for the generation
of many more network congestion control algorithms. How-
ever, there are two problems that arise when removing these
constraint: first, the guarantee that the generated algorithms
will work correctly is reduced; second, finding the optimal
solution may take a very long time. Hence, to improve the
grammar and enable generation of a wide variety of network
congestion control algorithms, it is necessary to investigate
methods to solve these problems. However, if this problem
can be solved, new network congestion control algorithms
can be discovered.

References
Al-Saadi, R., Armitage, G., But, J., and Branch, P. (2019). A survey

of delay-based and hybrid tcp congestion control algorithms.
IEEE Communications Surveys Tutorials, 21(4):3609–3638.

Assunção, F., Lourenço, N., Machado, P., and Ribeiro, B. (2017).
Automatic generation of neural networks with structured
grammatical evolution. In 2017 IEEE Congress on Evolu-
tionary Computation (CEC), pages 1557–1564.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman,
J., Tang, J., and Zaremba, W. (2016). Openai gym. CoRR.

Burke, E. K., Hyde, M. R., and Kendall, G. (2012). Grammatical
evolution of local search heuristics. IEEE Transactions on
Evolutionary Computation, 16(3):406–417.

Dharna, A., Togelius, J., and Soros, L. B. (2020). Co-generation
of game levels and game-playing agents. Proceedings of the
AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, 16(1):203–209.

Fenton, M., McDermott, J., Fagan, D., Forstenlechner, S., Hem-
berg, E., and O’Neill, M. (2017). Ponyge2: Grammatical
evolution in python. In Proceedings of the Genetic and Evo-
lutionary Computation Conference Companion, pages 1194–
1201.

Gawłowicz, P. and Zubow, A. (2019). Ns-3 meets openai gym:
The playground for machine learning in networking research.
In ACM International Conference on Modeling, Analysis and
Simulation of Wireless and Mobile Systems (MSWiM), pages
113––120.

Gurtov, A., Henderson, T., Floyd, S., and Nishida, Y. (2012). The
NewReno Modification to TCP’s Fast Recovery Algorithm.
RFC 6582.

Jay, N., Rotman, N., Godfrey, B., Schapira, M., and Tamar, A.
(2019). A deep reinforcement learning perspective on internet
congestion control. In Proceedings of the 36th International
Conference on Machine Learning, pages 3050–3059.

Li, W., Zhou, F., Chowdhury, K. R., and Meleis, W. (2019).
Qtcp: Adaptive congestion control with reinforcement learn-
ing. IEEE Transactions on Network Science and Engineering,
6(3):445–458.

Neupane, A. and Goodrich, M. (2019). Learning swarm behav-
iors using grammatical evolution and behavior trees. In Pro-
ceedings of the Twenty-Eighth International Joint Conference
on Artificial Intelligence, IJCAI-19, pages 513–520. Interna-
tional Joint Conferences on Artificial Intelligence Organiza-
tion.

O’Neill, M. and Ryan, C. (2001). Grammatical evolution. IEEE
Transactions on Evolutionary Computation, 5(4):349–358.

Packard, N., Bedau, M. A., Channon, A., Ikegami, T., Rasmussen,
S., Stanley, K. O., and Taylor, T. (2019). An Overview of
Open-Ended Evolution: Editorial Introduction to the Open-
Ended Evolution II Special Issue. Artificial Life, 25(2):93–
103.

Peterson, L. L. and Davie, B. S. (2011). Computer Networks, Fifth
Edition: A Systems Approach. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 5th edition.

Shaker, N., Nicolau, M., Yannakakis, G. N., Togelius, J., and
O’Neill, M. (2012). Evolving levels for super mario bros
using grammatical evolution. In 2012 IEEE Conference on
Computational Intelligence and Games (CIG), pages 304–
311.

Wang, R., Lehman, J., Clune, J., and Stanley, K. O. (2019). Poet:
Open-ended coevolution of environments and their optimized
solutions. In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 142–151.

