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Abstract

Having a model and being able to implement open-ended evo-
lutionary systems is important for advancing our understand-
ing of open-endedness. Complex systems science and newest
generation high-level programming languages provide in-
triguing possibilities to do so, respectively. Here, some recent
advances in modelling and implementing open-ended evolu-
tionary systems are reviewed first. Then, the so-called allag-
matic method to describe, model, implement, and interpret
complex systems is introduced. After highlighting some cur-
rent modelling and implementation challenges, model build-
ing blocks of open-ended evolutionary systems are identified,
a system metamodel of open-ended evolution is formalised in
the allagmatic method, and an implementation prototype with
a high-level programming language is outlined. The proposed
approach shows statistical characteristics of open-ended evo-
lutionary systems and provides a promising starting point to
interpret novelty generated at runtime.

Introduction
The diversity and complexity of organisms created by bio-
logical evolution over the last billions of years is staggering.
It is a never-ending story which invented all of nature so
far and continues to add more and more inventions (Stan-
ley, 2019; Stanley et al., 2017). Engineered physical sys-
tems, evolutionary and genetic algorithms, artificial intelli-
gence, deep learning, and other computational methods are
thus far not even close to the diversity, creativity, and open-
endedness exhibited by biological evolution. The main defi-
ciency is that all these computational systems reach an equi-
librium state at some point from which they do not generate
anything new anymore – they are essentially cul-de-sacs and
this happens rather quickly.

Understanding the open-endedness of biological evolu-
tion is a grand challenge, considered one of the “millennium
prize problems” (Bedau et al., 2000) in the field of artificial
life. If implemented in an open-ended computational sys-
tem, it would have major implications far beyond artificial
life (Stanley, 2019; Stanley et al., 2017). It would allow us to
invent virtually everything including new architectures, fur-
niture, cars, games, and of course algorithms and software
in general (Stanley, 2019; Stanley et al., 2017). It would

most likely bring us closer to strong artificial intelligence,
since only biological evolution has created it so far (Stanley,
2019; Stanley et al., 2017).

Furthermore, open-endedness has been observed in vari-
ous complex systems including human languages, legal sys-
tems, economic and financial systems, and technological in-
novation showing its relevance as well as urging its study
(Bedau et al., 2019; Banzhaf et al., 2016). These systems are
important for our society. Further understanding their open-
ended dynamics where a system is completely reorganising
itself from time to time (i.e. it crashes) is key to manag-
ing them. This feeds back onto some of our biggest chal-
lenges including climate change and socio-economic stabil-
ity (Thurner, 2020).

Recent Advances in Modelling Open-Ended
Evolutionary Systems

Definitions
Although progress has been made, especially by the open-
ended evolution community, much remains to be explored
(Packard et al., 2019). Before having a closer look at mod-
elling, we start with some preliminaries regarding the defi-
nition of open-ended evolution and open-endedness. Open-
endedness has been defined as the ability to continually pro-
duce novelty and/or complexity whereby novelty is clas-
sified into variation, innovation, and emergence (Banzhaf
et al., 2016). Based on creativity research (Boden, 2015),
different terms for this classification were suggested, namely
exploratory, expansive, and transformational novelty, re-
spectively (Taylor, 2019). The latter terms will be used
here to avoid interpretation issues with innovation and emer-
gence. Regardless of the terminology, both definitions re-
late to a formal model and metamodel of the system un-
der study. Exploratory novelty can be described using the
current model, expansive novelty requires a change in that
model but still uses concepts in the metamodel, and trans-
formational novelty introduces new concepts necessitating
a change in the metamodel (Banzhaf et al., 2016; Taylor,
2019). With their connection to model and metamodel, they
provide a way to determine whether and which kind of nov-



elty emerges in an open-ended evolutionary system.
Defining complexity and its measurement in open-ended

evolutionary systems is a topic of ongoing research too. Dol-
son et al. (2019) recommend an information-theoretic ap-
proach based on the count of informative sites across all
components in a population and suggest to improve it by
also accounting for all possible mutations and by consider-
ing epistatic interactions. Channon (2019) defines individ-
ual complexity as the diversity of adaptive components in
the individual, i.e. the number of active genes. Furthermore,
in evolutionary biology, information is quantified with re-
spect to different sources available to an adapting organism,
in particular from ancestors and the environment (Rivoire,
2016).

Modelling Contributions from Artificial Life and
Open-Ended Evolution Community
Banzhaf et al. (2016) have argued that open-endedness in
physical systems such as in a computation are hard to prove
in a finite universe and therefore one might look for produc-
ing a sufficient rather than an infinite number of open-ended
events, which is then called effectively open-ended. To
achieve this despite the limits on computational power, it has
been suggest to hard-code certain elements of the model, e.g.
the process of replication, into so-called shortcuts (Banzhaf
et al., 2016; Taylor, 2019). Taylor (2019) bases shortcuts on
generally accepted processes of Darwinian evolution: phe-
notype generation (from the genotype), phenotype evalua-
tion, and reproduction with variation. Ongoing evolutionary
activity and with that exploratory open-endedness is pro-
moted by modifying the adaptive landscape, the topology
of genetic space, or the genotype-phenotype map. He fur-
ther argues that none of these expand the phenotype-space
itself and thus do not help us for expansive and transforma-
tional open-endedness, where so-called door-opening states
in phenotype-space are needed. The complexity of physi-
cal and chemical laws provides a vast space for biological
systems whereas in computational systems one might dy-
namically increase the space instead, e.g. providing access
to additional resources on the Internet (Boden, 2015; Taylor,
2019; Taylor et al., 2016). In contrast, at the third workshop
on open-ended evolution, Taylor and others from the open-
ended evolution community mentioned that current compu-
tational systems implement rather scanty environments and
organisms.

Taylor (2019) also proposes two possible intrinsic mecha-
nisms to access new states. The first is via exaptation, where
a trait changes its function to a different one from the one it
was originally adapted for. Physical systems are composed
of multi-property components having multiple properties in
different domains (mechanical, chemical, electrical, pres-
sure, etc.) (Taylor, 2019). E.g. a multifunctional enzyme
has multiple properties in the same domain, which can pro-
duce expansive novelties whereas transformational novelties

can be achieved by properties in different domains (Taylor,
2019). The second is via non-additive composition, which
is phenotype generation by assembling a number of compo-
nents drawn from a set of component types (Taylor, 2019).
E.g. the construction of proteins from amino acid sequences,
producing new molecules, introducing new functions (Tay-
lor, 2019).

This assembly of lower-level elements into higher-level
structures is also highlighted by Banzhaf et al. (2016). With
the mentioned metamodel to define novelties, they also pro-
vide an abstract way to model multiple levels accounting for
such constructed structures at different levels (Banzhaf et al.,
2016). They also mention that having several levels drasti-
cally increases the combinatorial possibilities to construct
new structures and with that also the demand for computa-
tional power (Banzhaf et al., 2016). It therefore seems to be
a way to increase the opportunities to create something new.
It also implies that open-ended evolution in computational
systems is computational intensive.

Modelling Contributions from Complex Systems
Science
There are also relevant modelling contributions from the
field of complex systems science. W. Brian Arthur is
known for his work on complexity economics (Arthur, 2014)
and technology evolution (Arthur, 2018, 2009a). He pro-
posed the concept of combinatorial evolution, which states
that new technologies are created out of existing technolo-
gies and iteratively, these newly created technologies be-
come building blocks for yet further technologies (Arthur,
2009a,b). Technology is therefore self-creating or autopoi-
etic (Arthur, 2018, 2009b). In a simple computer model
of circuits, Arthur and Polak (2006) showed that compli-
cated technologies (in their case circuits) could be created
out of simpler building blocks and they found evidence of
self-organised criticality. It requires some kind of modu-
larity and the evolution of simpler stepping stone technolo-
gies (Arthur, 2018, 2009a,b; Arthur and Polak, 2006). The
latter means that we cannot create a technology ahead of
time without first creating the simpler precursor technolo-
gies. Natural phenomena also provide technological ele-
ments which can be combined (Arthur, 2018, 2009b). In
terms of open-endedness, there seems to be a vast space of
possible combinations and with the conversion of discov-
ered natural phenomena into technological elements, there
is a mechanism in place to expand that space.

Combinatorial evolution is also part of a more general ap-
proach to modelling evolution by the complex system sci-
entist Stefan Thurner. He and his colleagues recently intro-
duced the co-evolutionary, combinatorial, and critical evo-
lution model (CCC model) (Thurner, 2018; Thurner et al.,
2018, 2010; Klimek et al., 2012, 2010; Hanel et al., 2005).
It models evolution as an open-ended process of creation
and destruction of new entities emerging from the interac-



tions of existing entities with each other and with their en-
vironment (Thurner et al., 2018). The spaces of entities and
of interactions co-evolve and new entities emerge sponta-
neously or through the combination of existing entities. This
leads to power law statistics in histories of events (Thurner
et al., 2018, 2010). Selection is modelled by specifying
rules for what can be created and what will be destroyed
(Thurner, 2018; Thurner et al., 2018, 2010). This model
captures so-called punctuated equilibria in biological evolu-
tion (Gould and Eldredge, 1977) or Schumpeterian business
cycles in economic evolution (Schumpeter, 1939), where an
equilibrium is destabilised or destroyed by a critical transi-
tion leading to another equilibrium in an ongoing and thus
open-ended process (Thurner, 2018; Thurner et al., 2018,
2010; Thurner, 2011). It is interesting to note that it could be
shown that in economic innovation, creative deconstruction
is happening and not niche filling as in biological innovation
(Thurner, 2018; Thurner et al., 2018; Klimek et al., 2012).

Modelling Contributions from Artificial
Intelligence and Evolutionary Algorithms
Open-ended evolution is also studied in artificial intelligence
and evolutionary algorithms. It is an emerging topic where
the research of Kenneth O. Stanley serves as an example
here. He tried to get rid of the prevailing concept to re-
ward optimising a fitness function and has even suggested to
abandon objectives in general (Stanley and Lehman, 2015;
Lehman and Stanley, 2011; Stanley, 2010). He showed that
a novelty-driven approach finds solutions faster and results
in solutions with less genomic complexity in comparison to
traditional evolutionary computation (Woolley and Stanley,
2014). He also devised a number of algorithms including
novelty search with explicit novelty pressure, MAP-Elites
and innovation engines with explicit elitism within niches
in an otherwise divergent process, and minimal criterion co-
evolution where problems and solutions can co-evolve diver-
gently (Auger et al., 2019; Bosman et al., 2017). Similar to
Thurner, avoiding objectives also allowed Stanley to model
punctuated equilibria with transitions between equilibria in
a simple simulation with voxel structures (Pugh et al., 2017).
Also in this case co-evolution and the never-ending creation
of anything new by combining existing structures were es-
sential ingredients.

Modelling Contributions from Evolutionary
Biology
The work of Thurner and Stanley indicates that transitions
between equilibria are an important part of open-ended evo-
lution. In evolutionary biology, the major evolutionary tran-
sitions are of great interest too, for example the transi-
tion from unicellular to multicellular organisms (Szathmáry,
2015; Szathmáry and Smith, 1995). Here, only a small
selection of research is presented, mainly on mechanisms
which can explain rapid increases in diversity and biologi-

cal innovation. The work of evolutionary ecologist Ole See-
hausen illustrates this well as he is interested in mechanisms
by which diversity arises. Especially relevant here is the
possibility of speciation through combinatorial mechanisms.
In such cases, new combinations of old gene variants can
quickly generate reproductively isolated species and thus
provide a possible explanation for rapid speciation (Marques
et al., 2019). E.g. he showed that hybridisation between
two divergent lineages provides ample genetic starting vari-
ation. This is then combined and sorted into many new
species fuelling rapid cichlid fish adaptive radiations (Meier
et al., 2017). Seehausen furthermore investigates and un-
derlines the importance of jointly considering species traits
and environmental factors in speciation and adaptive radi-
ation as they affect one another (Seehausen, 2009; Wagner
et al., 2012). His work therefore supports the importance of
co-evolutionary and combinatorial dynamics for open-ended
evolution, even though co-evolution is between species in a
heterogeneous environment and combinations happen at the
gene level.

Biological insights into innovation itself are also rele-
vant. The work of evolutionary biologist Andreas Wag-
ner illustrates this nicely (Hochberg et al., 2017; Wagner,
2011b). E.g. he showed that recombination creates pheno-
typic innovation in metabolic networks much more readily
than random changes in chemical reactions (Hosseini et al.,
2016). The work of Wagner suggests that recombination
of genetic material is a general mechanism which greatly
increases the diversity of genotypes (Wagner, 2011a; Mar-
tin and Wagner, 2009). Also relevant here is his work on
evolutionary innovation through exaptation. He found that
simulated real metabolic networks were not only able to
metabolise on a specific carbon source but also on several
others, which shows that metabolic systems may harbour
hidden pre-adaptations that could potentially lead to evolu-
tionary innovations (Barve and Wagner, 2013). Combina-
torial interactions at the gene-level again play a crucial role
and the latter study revealing hidden pre-adaptations is simi-
lar to Stanley’s open-ended algorithms creating many poten-
tial solutions before applied to solve an actual problem.

Besides this limited and biased review of contributions
from evolutionary biology, it seems nevertheless important
to point out that the field has shown that combinatorial inter-
actions matter at organisational levels above the genes and
that a changing environment can greatly affect species diver-
sity and vice versa.

Recent Advances in Implementing
Open-Ended Evolutionary Systems

Implementation Contributions from Artificial Life
and Open-Ended Evolution Community
We first consider implementations from the artificial life and
open-ended evolution community. Banzhaf et al. (2016) and



Taylor (2019) provide some implementation suggestions.
The implementation of computational systems which can
detect and integrate novelties into the model and metamodel
as described by Banzhaf et al. (2016) and Taylor (2019) pro-
vides a challenge in its own right. It is argued that operations
should be defined intrinsically in the system and by the sys-
tem itself (Taylor, 2019; Packard, 1988). It requires program
code which can recognise and modify itself. Banzhaf et al.
(2016) state that this can be achieved by representing entities
as strings of assembly language code, or by using a high-
level language specifically designed for this purpose (Spec-
tor and Robinson, 2002), or a reflective language. Indeed
it has been possible to generate exploratory, expansive, and
transformative novelty with Stringmol, where modifications
happen in sequences of assembly language code (Stepney
and Hickinbotham, 2020). A replicator and some of the ob-
served operations and structures were extrinsically defined
whereas some others could be defined intrinsically (Stepney
and Hickinbotham, 2020).

There are a number of computational systems of which
Avida (Ofria and Wilke, 2004) and Geb (Channon and
Damper, 2010) are two prominent examples. Usually dig-
ital organisms are represented by assembly code compet-
ing for limited CPU resources. Most of these systems ex-
trinsically implement common shortcuts such as replication
and a certain fitness function, which makes them a powerful
tool to explore biological questions such as the genotype-
phenotype mapping (Fortuna et al., 2017) in a highly con-
trolled way. Another strength of computational systems is
that they usually involve visualisations, e.g. Sims (1994),
and with that help exploring complex evolutionary dynam-
ics. With respect to open-endedness, however, Pugh et al.
(2017) point out that none of these systems has generated ex-
plosions of complexity, as seen in biological evolution dur-
ing transitions and therefore something must still be missing.
With Voxelbuild, Pugh et al. (2017) contributed the most rel-
evant computational system in this respect. A first prototype
demonstrated that a certain organisation of voxels emerged
which was used as a stepping stone for yet other organisa-
tions appearing later. This seems to be similar to combi-
natorial evolution. Additionally, they report that exaptation
occurred, which reminds of the evolutionary biology studies.

Implementation Contributions from Complex
System Science
Thurner et al. (2018) add another important aspect to the im-
plementation. They argue that only a so-called algorithmic
implementation and thus discrete formulation can work be-
cause in evolutionary systems, boundary conditions cannot
be fixed (the environment evolves as a consequence of the
system dynamics), and the phase-space is not well defined
as it changes over time (Thurner et al., 2018). It would lead
to a system of dynamical equations that are coupled dynam-
ically to their boundary conditions, which is according to

them a mathematical monster and the reason why evolution-
ary systems cannot be implemented following an analytical
approach. In addition, with the CCC model, they provide a
general description of a complex evolving system that is so
general that it applies to every evolutionary system.

The Allagmatic Method
Modelling Contribution
We have developed the so-called allagmatic method (Chris-
ten and Fabbro, 2019, 2020) to describe, model, implement,
and interpret complex systems. It consists of a system meta-
model inspired and guided by philosophical concepts of the
French philosopher Gilbert Simondon (Simondon, 2017).
His metaphysics gives an operational and systemic account
of how technical and natural objects function. It allows ab-
stractly defining a system with the concepts structure and
operation since according to him, systems develop starting
with a seed by a constant interplay between operations and
structures. More concretely but still general, we defined
model building blocks in a system metamodel. The main
building blocks are entity, milieu, update function, adapta-
tion function, and target, for which we recently provided
a mathematical formalism (Christen, 2020). The creation
of such a system model and metamodel can be followed
through three regimes: In the virtual regime, abstract def-
initions with classes corresponding to interpretable philo-
sophical concepts and principles are given. Using generic
programming, the type of the states an entity can have are
defined by defining a system model object with no other pa-
rameters initialised yet. Here starts the metastable regime,
where step by step the object/model is concretised with pa-
rameters such as number of entities and concrete update
functions (model individuation). Once all parameters are
defined, the object can be executed in the actual regime. If
there are any adaptation processes involved, the allagmatic
method cycles between the metastable and actual regimes.

Implementation Contribution
The programming of the allagmatic method with its system
metamodel is aligned with philosophical concepts. This not
only allows interpretation of the final result in the context of
the related metaphysics, it also allows to follow the develop-
mental steps a model is undergoing and thus provides a way
to study the emergence of typical characteristics of complex
systems. We recently outlined how adaptation can be stud-
ied in this way in a working paper (Fabbro and Christen,
2020). There, we also introduced the possibility and prin-
ciples to form hierarchies and define control, which further
supports the use of the allagmatic method to define concepts
or principles that are difficult to pin down.

Furthermore, we showed how the method might be used
for automatic programming (Christen and Fabbro, 2020).
We found that the abstract model building blocks are well
suited to be automatically combined by self-modifying code



in a high-level language. Our work shows that certain philo-
sophical principles and even metaphysics as a whole can be
defined and implemented in program code providing the op-
portunity to run these principles or the whole metaphysics
and study them in action.

We also created a prototype of open-ended automatic pro-
gramming by combinatorial evolution (Fix et al., 2021).
Similar to Arthur and Polak (2006), we created a compu-
tational model based on combinatorial evolution but instead
of evolving circuits, we evolved computer code. Useful code
blocks were stored in a repository and could be used in later
iterations. Starting with basic keywords available in the pro-
gramming language, more complex code blocks including
classes, void methods, and variable declarations evolved.

Current Modelling and Implementation
Challenges

Modelling Open-Ended Evolutionary Systems
Co-evolutionary dynamics, combinatorial interactions, and
a changing environment seem to be important ingredients of
open-ended evolutionary systems. The work of evolution-
ary biologists including Seehausen and Wagner supports the
view that co-evolutionary dynamics and combinatorial in-
teractions are key elements. They also indicate that bio-
logical evolution exhibits different levels or types of com-
binatorial interactions and that the environment is an impor-
tant driver and mediator of change. The CCC model ac-
counts for co-evolutionary dynamics and combinatorial in-
teractions, and successfully generates the statistics of eco-
nomic data with ever reoccurring transitions between equi-
libria (Thurner, 2018; Thurner et al., 2018, 2010; Klimek
et al., 2012, 2010; Hanel et al., 2005). It could also show
that economic innovations are driven by creative destruc-
tion, thus Schumpeterian evolution. This provides important
insights into open-ended dynamics of economic evolution
(Thurner, 2018; Thurner et al., 2018; Klimek et al., 2012).
However, it still needs be investigated in other evolutionary
systems, especially in biological evolution. Banzhaf et al.
(2016) and Taylor (2019) provide guidance for modelling
open-ended evolution in general which might allow us to
come up with a model that captures open-ended dynamics
of any evolutionary system, including economic and biolog-
ical systems.

Implementing Open-Ended Evolutionary Systems
There is the challenge of an intrinsic implementation of
open-ended evolution. The programming techniques already
exist to do that, however, the real challenge is linking the
structure and events in the implementation with interpretable
concepts. To illustrate this problem, let us assume giving up
shortcuts completely and letting the program overwriting the
model and metamodel completely. Having no replicator or
other prevailing concepts makes it hard to understand and
see what is going on in the evolutionary simulation. This

problem was discussed at the third workshop on open-ended
evolution. It is mostly uncharted territory needing much
more research, including how to identify certain concepts
and components from simulation data and how to implement
such systems in a purely intrinsic manner, where generated
novelties are meaningfully integrated into the model/meta-
model by the evolving systems themselves.

Another challenge is the choice of digital organisms and
environment. The CCC model (Thurner, 2018; Thurner
et al., 2018, 2010; Klimek et al., 2012, 2010; Hanel et al.,
2005) provides a mathematical formalism for theoretical
considerations and ways to perform statistical analyses.
Computational systems from artificial life and open-ended
evolution community such as Voxelbuild usually come with
powerful visualisations, however, they lack a mathematical
formalism.

The Allagmatic Method for Open-Ended
Evolutionary Systems

Model Building Blocks of Open-Ended
Evolutionary Systems
Observing evolving systems like technology or the rain for-
est makes clear that not only entities evolve but also interac-
tions among them. Co-evolution implies that species affect
each other reciprocally. Since species are also part of the
environment, co-evolution leads to a changing environment
providing more possibilities of state changes. Also external
environmental input can change and effect species and their
interactions. Combinatorial interactions create new entities
from existing entities (Arthur, 2018, 2009a; Thurner, 2018;
Thurner et al., 2018). These newly created entities might be
able to exploit different parts of the changing environment
and with that might be able to fill niches arising. Chromaria
(Soros, 2018) captures this to some degree as entities be-
come part of the environment thus change the environment
that interacts with further new entities. Changing the inter-
actions between entities and between entities and their en-
vironment leads to complex cascades of changes potentially
leading to disruptive changes in the system that can be re-
garded as novelties. Combinatorial interactions also lead to
evolutionary changes and potential novelties, they combine
existing entities to form new entities. This can be nicely ob-
served in the evolution of technology (Arthur, 2018, 2009a).
It is a way how transitions might be explained, e.g. from uni-
cellular to multicellular organisms (Szathmáry, 2015; Sza-
thmáry and Smith, 1995).

The main idea is therefore to capture co-evolutionary dy-
namics including with the environment and combinatorial
interactions with the allagmatic method as given by the CCC
model. The CCC model has been able to generate an ongo-
ing evolutionary process with punctuated equilibria when in
addition the lifetime of an entity was limited (Thurner, 2018;
Thurner et al., 2018, 2010). It therefore showed the statisti-
cal behaviour of open-ended evolutionary systems. Here, the



CCC model is formalised within the allagmatic method to
allow interpretation within the modelled metaphysics. The
system metamodel of the allagmatic method and the CCC
model both follow a complex systems perspective, which
makes them compatible.

The model building blocks or general principles to be cap-
tured with the allagmatic method are specifically evolving
entities, entity lifetime parameters, co-evolutionary opera-
tions of entities and environment, and combinatorial inter-
actions.

System Model and Metamodel Formalism of
Open-Ended Evolution
The allagmatic method consists of a system metamodel
for modelling systems in general and complex systems
in particular (see Christen (2020) for detailed mathemat-
ical definitions). The system metamodel describes indi-
vidual parts of a system as entities defined with an en-
tity e-tuple E = (ê1, ê2, ê3, . . . , êe), where êi ∈ Q with
Q being the set of k possible entity states. Entity states
are updated over time according to an update function φ :
Qm+1 → Q with m being the number of neighbouring
or linked entities. The update function φ therefore de-
scribes how entities evolve over time dependend on neigh-
bouring entities. Entities are thereby considered connected
together in a network structure and defined with the mi-
lieus e-tuple M = (M̂1,M̂2,M̂3, . . . ,M̂e), where M̂i =
(m̂1, m̂2, m̂3, . . . , m̂m) is the milieu of the i-th entity êi of
E consisting of m neighbours of êi. Over time, update func-
tion φ and milieus M might be changing as well, which is
described with the adaptation function ψ.

We now extend the system metamodel with principles to
model open-ended evolution as identified above. Evolving
entities: The entity e-tuple E captures evolving entities in
the same way as the general evolution algorithm (Thurner
et al., 2018) does with the state vector σ. The general evolu-
tion algorithm can be regarded as the metamodel from which
the CCC model can be created (Thurner et al., 2018). Co-
evolutionary operations of entities and environment: With
the creation of new entities (novelty), also new possibili-
ties for interactions emerge. This is key for open-endedness
and is captured by the co-evolution of entities and their in-
teraction in the general evolution algorithm (Thurner et al.,
2018). Formally, the update equations of the entity state
vector σ and the interaction tensors M are simultaneously
updated over time. In the system metamodel of the allag-
matic method, this is described with the adaptation function
ψ that can be modelled in such a way that the update func-
tion φ and milieus M are updated simultaneously. This is
a concretisation of the system metamodel into a metamodel
of open-ended evolution. The environment is also part of
co-evolution and described in the state vector σ in the gen-
eral evolution algorithm (Thurner et al., 2018) and the entity
e-tuple E in the system metamodel. Combinatorial interac-

tions: In complex systems, interactions are of combinatorial
nature consisting of rules determining how new entities can
be formed out of existing entities. The creation and destruc-
tion of entities is encoded in rules that do not change with
time. They can be regarded as physical or chemical laws de-
termining which transformations and reactions are possible,
respectively. Please note that this includes the typical evo-
lutionary mechanisms of selection, competition, and repro-
duction. At runtime, models created from this metamodel
make use only of a subset of these rules at any given time
point, which is captured with so-called active productive/de-
structive rules. This is formally described with the func-
tion F in the general evolution algorithm (Thurner et al.,
2018) and the update function φ in the system metamodel.
Entity lifetime parameters: Besides the creation of new en-
tities through combinatorial interactions, entities can spon-
taneously appear, which would be similar to discovering a
new law or element in nature. By introducing a decay rate
λ, the CCC model did not freeze (Thurner et al., 2018). It
thus plays an important role for open-ended evolution. In the
system model, this parameter can be described as a further
structure in the update function φ.

Implementation with the Allagmatic Method
An intrinsic implementation as suggested by Banzhaf et al.
(2016); Taylor (2019) requires self-modifying program code
and some way to add novelties to the model or metamodel.
Interpreting these novelties in the context of a certain meta-
physics will most likely require a high-level language with
the capabilities to modify program code during runtime and
reflect on it. C# provides these capabilities with the open-
source Roslyn .NET compiler. The compiler platform pro-
vides dynamic code manipulation with expression trees and
many other features including reflection as well as compre-
hensive code analysis. Expression trees can either be cre-
ated from a string containing program code or they can be
assembled using predefined classes. Instead of writing pro-
gram code into a file and then compile it, expression trees
are stored as an object and compiled in-memory at runtime.

In the allagmatic method, a general layer in the system
metamodel that is not be modifiable by the code is suggested
here. These are the model building blocks every complex
evolutionary system requires. However, there is also a layer
in the metamodel that is modifiable by the code. It consists
of less general model building blocks that are basically more
concrete instances of the general layer. With these different
layers and controllable code self-modification, it will poten-
tially be possible to link concepts defined in the metamodel
to newly generated code improving interpretability.

It is interesting to note that certain models anticipate
changes that might occur to them. In every evolutionary
system new entities arise and other entities disappear, which
will not only change how many entities there are but also
their interactions with each other and the environment. The



CCC model is capable of accounting for such changes in the
model through co-evolution of entity states and interactions.
On this level, it therefore does not need self-modification of
the code but generic programming of certain structures to
dynamically adapt them to these changes.

Discussion and Outlook
Based on recent advances, the model building blocks evolv-
ing entities, entity lifetime parameters, co-evolutionary op-
erations of entities and environment, and combinatorial in-
teractions are identified to characterise open-ended evolu-
tionary systems. These principles led to punctuated equilib-
ria in the CCC model (Thurner et al., 2018), which means
that it never reaches an equilibrium state and thus can be
regarded open-ended. This study provides a formal descrip-
tion of a system metamodel for open-ended evolution ac-
cording to the CCC model thus also capable of generating
punctuated equilibria.

The motivation for such a system metamodel is that it
is part of the allagmatic method, which allows describing,
modelling, implementing, and interpreting abstract concepts
and principles, i.e. a certain metaphysics. Interpretation of
concepts within a metaphysics provides a promising starting
point to interpret novelty generated at runtime.
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