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Introduction
While there are a range of opinions about what underly-
ing mechanisms may be necessary or sufficient for a sys-
tem to exhibit Open-Ended Evolution (OEE), there is some-
thing close to a consensus about the observable behavioral
hallmarks of OEE. The report from the first workshop on
OEE summarized these in the York categories of OEE (Tay-
lor et al., 2016; Packard et al., 2019):

York 1: Ongoing generation of adaptive novelty:
(a) Ongoing generation of new adaptations
(b) Ongoing generation of new kinds of entities
(c) Emergence of major transitions
(d) Evolution of evolvability

York 2: Ongoing growth of complexity:
(a) Ongoing growth of entity complexity
(b) Ongoing growth of interaction complexity

Following the second and third workshops on OEE, the
editorial introduction to the Open-Ended Evolution II Spe-
cial Issue (Packard et al., 2019) presented the Tokyo cate-
gories of OEE, in which York types 1a, 1b, 2a and 2b were
merged into Tokyo type 1; York types 1d and 1c became
Tokyo types 2 and 3; and a new category (type) was added,
with the caveat that “perhaps semantic evolution is a special
case of Tokyo type 1 OEE”:

Tokyo 1: ongoing generation of Interesting new kinds of
entities and interactions

Tokyo 2: ongoing generation of Evolution of evolvability
Tokyo 3: ongoing generation of Major transitions
Tokyo 4: ongoing generation of Semantic evolution

OEE can be studied in Nature (Bedau et al., 1997); in sys-
tems with ongoing human intervention (such as the global
economy, Internet traffic and systems involving user eval-
uation or interaction); and in autonomous artificial systems,
that is systems with no ongoing human (or other external) in-
tervention. In the context of autonomous artificial systems,
Tokyo type 1 OEE is considered (by this author at least) as
a necessary foundation for Tokyo types 2, 3 and 4 OEE. It

is difficult to conceive of an autonomous artificial system
achieving Tokyo type 2, 3 or 4 OEE without first achiev-
ing Tokyo type 1 OEE. So the construction and testing of
autonomous artificial systems to achieve Tokyo type 1 OEE
is the most immediate challenge for research into the open-
ended evolution of autonomous artificial systems.

This paper brings together five methods of analysis to
form a procedure for testing for Tokyo type 1 OEE:

1. Evolutionary activity statistics (Bedau et al., 1997);
2. Component-normalised evolutionary activity statis-

tics (Channon, 2003, 2006);
3. Long-term evolutionary dynamics classification (Bedau

et al., 1998);
4. Analysis of Indefinite Scalability in Diversity and Com-

plexity (Ackley and Small, 2014; Channon, 2019);
5. Analysis of the Order of Indefinite Scalability.

The procedure involves proceeding through these five
steps sequentially. It is presented here as simply as possible,
isolated from the complexities of any particular evolutionary
system, and with a clear rationale for each step. The title of
this extended abstract includes “draft edition” as the inten-
tion is to encourage discussion of this at The Fourth Work-
shop on Open-Ended Evolution (OEE4) and to then refine
the procedure and this paper for publication as a “first edi-
tion”. This continued use of the term “edition” is intended
to convey that the procedure will be developed furthr in the
years to come, with the construction and evaluation of evo-
lutionary systems aiding in that development.

Step 1: Compute basic evolutionary activity
statistics

At the core of OEE is the ongoing evolution of adaptive nov-
elty (York type 1 OEE): “new components flowing into the
system and proving their adaptive value through their persis-
tent activity” (Bedau et al., 1998) (components could be, for
example, genes, organisms or species). However, an evolu-
tionary process could continue to generate adaptive novelty
but lose what had previously been evolved at the same or a
faster rate, cycling or idling with a limited extent of adaptive



success. Ongoing adaptive novelty alone would provide for
a poor definition of OEE, for a trivial system could gener-
ate evermore novel components. Ongoing progress, an un-
bounded accumulation of adaptive success, is also core to
OEE. Evolutionary activity statistics provide a measure of
exactly that: “a measure of the continual adaptive success of
the components in the system” (Bedau et al., 1998), based
on adaptive persistence.

∆i(t) =

{
1 if component i exists at t
0 otherwise (1)

ai(t) =

{ ∑t
τ=0 ∆i(τ) if component i exists at t

0 otherwise
(2)

A component’s cumulative evolutionary activity ai(t) is a
measure of the accumulation of its adaptive success. Specif-
ically, it is the length of time that the component has ex-
isted, discounting any periods of absence (equation 2). The
sum of component activities (for those components present,
in use) is a measure of the system’s accumulation of adap-
tive success, termed total cumulative evolutionary activity
(Acum(t), equation 3). That is all there is to know to com-
pute these basic evolutionary activity statistics! They can be
computed for any evolving system with an available record
of its components’ existence times, so are widely applicable
across artificial and natural systems.

Acum(t) =
∑
i

ai(t) (3)

In step 1, these evolutionary activity statistics are com-
puted and a quick check performed to see whether or not to-
tal cumulative evolutionary activity is bounded. If it is, there
is no potential for a classification of unbounded evolutionary
activity in step 3 below and so the procedure ends. Only the
biosphere (Bedau et al., 1997, 1998) and a very small num-
ber of autonomous artificial systems have demonstrated un-
bounded total cumulative evolutionary activity (Taylor et al.,
2016) (even before normalization using a shadow model).
Developing and demonstrating more autonomous systems
that exhibit unbounded total cumulative evolutionary activ-
ity (and that have good prospects for success at subsequent
steps) is a clear priority. Fortunately, the effort required to
evaluate a system to this extent is low, given that no random-
selection shadow model is required for this first step.

Step 2: Compute component-normalised
evolutionary activity statistics

Following success at step 1, step 2 involves first the im-
plementation of a “shadow” model (population and sys-
tem) that is identical to the real evolutionary system (run-
ning in parallel) except that whenever selection operates
in the real system, random selection should be employed
in the shadow; and, second, resetting the shadow system’s

components and evolutionary activity history to those of
the real (running) system immediately after each snapshot
(when an entry is made in the component existence record).
Together these provide the data required for the computa-
tion of component-normalised evolutionary activity statis-
tics (Channon, 2003, 2006). Specifically, they enable com-
parison of inter-snapshot changes in activity in the real run
with changes we would expect from neutral (random) selec-
tion.

∆R
i (t) =

{
1 if component i exists in the real run at t
0 otherwise

(4)

∆S
i (t) =

{
1 if component i exists in the shadow at t
0 otherwise

(5)

∆N
i (t) = ∆R

i (t)−∆S
i (t) (6)

aNi (t) =

{ ∑t
τ=0 ∆N

i (τ) if component i exists in the real run at t
0 otherwise

(7)

The shadow is used to normalize (exclude non-adaptive)
evolutionary activity at the component level (“component
activity normalization”, equations 4-6), giving a measure
of each component’s adaptive evolutionary activity aNi (t)
(equation 7) and so also component-normalized (adaptive)
measures of total, mean and median cumulative evolution-
ary activity (equations 8-10).

AN
cum(t) =

∑
i: component i exists

in the real run at t

aNi (t) (8)

ĀN
cum(t) =

AN
cum(t)

DR(t)
(9)

ÃN
cum(t) = Median

i: component i exists
in the real run at t

aNi (t) (10)

Ongoing adaptive novelty is determined through new ac-
tivity AN

new(t) (equation 12): the sum of newly adaptively-
significant components’ activities, divided by component di-
versity (the number of components present, in use in the real
run). A component is considered adaptively significant if its
activity is above a threshold, taken to be the absolute value
of the most negative component-normalised evolutionary ac-
tivity so as to screen out non-adaptive activity (Channon,
2006).

DR(t) = #{i : ai(t) > 0} (11)



AN
new(t) =

1

DR(t)

∑
i:component i ‘new’

aNi (t) (12)

Stout and Spector (Stout and Spector, 2005) attempted
to “break” the original (Bedau et al., 1998) and en-
hanced (Channon, 2003, 2006) classification schemes (step
3 below) by achieving a classification of unbounded dynam-
ics in “intuitively unlifelike” systems. They concluded that
component activity normalization is “of particular impor-
tance to the scheme’s robustness . . . canceling out the poten-
tial for spurious results arising from the (random) divergence
of the real and shadow populations”. Bedau et al.’s reasoning
that “the mere fact that a family appears in the fossil record is
good evidence that its persistence reflects its adaptive signif-
icance” (Bedau et al., 1998) (as “[s]ignificantly maladaptive
taxonomic families would likely go extinct before leaving
a trace in the fossil record” (Bedau et al., 1998)) is gener-
ally accepted. But for artificial systems, Stout and Spector’s
findings support the argument for employing component ac-
tivity normalization, at least for cases (choices of component
class) in which components can be maladaptive.

Step 3: Long-term evolutionary dynamics
classification

After determining long-term trends in component-
normalised evolutionary activity statistics, including
new activity and total, mean and median cumulative evo-
lutionary activity, the system’s long-term evolutionary
dynamics can be classified. The hallmark of unbounded
evolutionary dynamics is ongoing positive new evolutionary
activity AN

new(t) in combination with unbounded total
(AN

cum(t)) and median (ÃN
cum(t)) cumulative evolutionary

activity (Bedau et al., 1998; Channon, 2006).
A classification of unbounded evolutionary dynamics, us-

ing component-normalised evolutionary activity statistics,
provides a test for York type 1a OEE (without ruling out
other types). Only one autonomous artificial system has
demonstrated this (Taylor et al., 2016). Developing more
autonomous systems that do is a further clear priority; any
such system would be a significant new contribution to the
field.

Further, the one autonomous artificial system we have at
this level (Channon, 2006) lacks behavioral transparency,
preventing the direct observation of artifacts and behaviors
far beyond the early stages of evolution. A very signif-
icant advance would be made by the development of an
autonomous artificial system that demonstrates unbounded
evolutionary dynamics (using component-normalised evolu-
tionary activity statistics) and in which long (evolutionary)
sequences of evolved artifacts or behaviors and the evolu-
tion of more complex artifacts and behaviors can be seen,
evidenced by phenotypes rather than by metrics. This high-
lights the need to develop future systems such that behav-

ioral descriptions are as easy to generate as possible, for ex-
ample by constructing systems such that behaviors will be
transparent to human observers.

Step 4: Analysis of Indefinite Scalability in
Diversity and Complexity

If an evolutionary system exhibits unbounded evolutionary
dynamics in step 3, it would be natural to want to know
whether or not the system also exhibits ongoing growth in
maximum individual (or group or system) complexity, i.e.
York type 2 OEE.

The diversity of components (the number of different
components) in an individual (or group or species) is one
measure of its complexity. This is particularly appropriate
when a component is analogous to a gene. Schad, Tompa
and Hegyi (Schad et al., 2011) demonstrated that organism
complexity correlates significantly with gene number in the
absence of plant genomes, and Chen, Bush et al. (Chen et al.,
2014) reached the same finding.

In Bedau, Snyder and Packard’s classification of long-
term evolutionary dynamics (Bedau et al., 1998), the class
of systems with unbounded evolutionary dynamics is di-
vided into three subclasses: (a) those with unbounded diver-
sity of adaptive components but bounded adaptive success
(cumulative evolutionary activity) per component; (b) those
with bounded diversity but unbounded adaptive success per
component; and (c) those with unbounded diversity and un-
bounded adaptive success per component. Where complex-
ity is measured as diversity of components, ongoing growth
in system complexity is equivalent to unbounded diversity,
so these subclasses relate directly to ongoing growth in sys-
tem complexity, i.e. York type 2 OEE, and subclass c is
implied by ongoing growth in any of individual, group or
system complexity when observed together with unbounded
adaptive success per component.

While adaptive success per component can be truly un-
bounded (over unbounded time), the diversity of adaptive
components is necessarily bounded: in artificial systems by
unavoidable physical limits such as computer memory, and
in nature again by physical limits such as number of atoms.
A claim of unbounded diversity in the biosphere is really a
claim that diversity is not practically bounded, or that it has
not reached the upper bound yet. A more precise notion than
“unbounded” diversity is needed. Ackley’s concept of indef-
inite scalability (Ackley and Small, 2014) provides this. The
key criteria for indefinite scalability is that should an upper
bound be reached, increasing the values of physical limi-
tations (such as available matter, population size or mem-
ory) should enable an unbounded sequence of greater upper
bounds to be achieved (after sufficient increases in the lim-
itations); in the case of diversity this means an unbounded
sequence of greater upper bounds on diversity.

A practical (and the most literal) interpretation of indefi-
nite scalability is that the sequence of greater upper bounds



(on increasing the values of physical limitations) continues
to an unknown length, i.e. that no end to it has been been
found. It is therefore best to qualify any empirical claims
by quantifying the extent to which indefinite scalability has
been established. Claims about systems can be expressed
and evaluated in terms such as a metric (for example a mea-
sure of adaptive success per component) increasing appar-
ently without bound up to a certain system time (or number
of generations, etc.); or a metric (for example diversity) in-
creasing up to certain value(s) of system parameter(s) being
reached, where it was necessary to increase these to establish
increases in scale (for example of diversity) over successive
runs.

So, in step 4 the aim is to demonstrate a sequence of
greater upper bounds on diversity (on increasing the values
of physical limitations) that increases without any known
bound, qualifying the extent (for example number of gen-
erations or values of physical limitations) to which this has
been established. This step (step 4) is likely to be developed
further in future years, as to date only one system (Channon,
2019) has been evaluated at this level.

Step 5: Analysis of the Order of Indefinite
Scalability

While that system exhibited indefinite scalability in diver-
sity and complexity, the analysis in (Channon, 2019) also
revealed that complexity scaled logarithmically with (the
lower of) maximum population size and maximum num-
ber of neurons per individual. It was noted that the evolu-
tion of artifacts and behaviors of much greater complexity,
for example comparable to those in nature, within feasible
timescales, will almost certainly require a higher order of
complexity scaling. Achieving a higher order of complexity
growth (within a system exhibiting indefinite scalability in
complexity) can be considered a grand challenge for Tokyo
Type 1 Open-Ended Evolution. Promising approaches to
this grand challenge include also achieving one of more of
the other Tokyo Types of OEE. Indeed, this can be seen as
one answer to why these other types of OEE are important,
providing a unified view of Open-Ended Evolution.
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