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Abstract

Open-ended evolution researchers seek to create systems that
continually produce “new” evolutionary outcomes, attempt-
ing to mimic the power and diversity of evolution in nature.
The specific metrics used (novelty, complexity, diversity, etc)
vary by researcher, but the holy grail would be a system where
any of these can accumulate indefinitely. Of course, one chal-
lenge that we face in reaching this goal is even recognizing if
we have succeeded. To determine the evolutionary potential
of a system, we must conduct finite experiments; based on
their results we can predict how we would expect evolution
to progress were the run to have continued. Here we begin to
explore how such predictions might be made and how accu-
rate they might be. In this initial study, we focus on predicting
fitness; this metric can be easy to calculate, and often corre-
lated with increases in traits like novelty and complexity. We
find the best fit to measured values of fitness in a simple digi-
tal evolution experiment, and demonstrate that projecting this
fit out usually predicts that fitness will be constrained by an
asymptote. Extending the experiments, however, we see that
fitness often shoots past this asymptote, belying the bound-
edness that it implies. Extending past a premature end point
allows us to see through this “boundedness illusion”.

Introduction
Evolution has produced an astounding degree of diversity in
biological life. Current evidence suggests that this has been
going on for 3.8 billion years on Earth (Mojzsis et al., 1996;
Rosing, 1999), and yet evolutionary innovation is far from
over. New strains of respiratory diseases circulate yearly
(Grenfell et al., 2004; Nelson et al., 2007). Populations of
predators continuously race against prey in co-evolutionary
cycles, where changes in one population alter selection pres-
sures on the other, and those changes in the second pop-
ulation reflect back as new selection pressures on the first
(Abrams, 2000). Even a long-term laboratory study of E.
coli in a simple glucose-rich environment provides no evi-
dence of evolution reaching an endpoint (Wiser et al., 2013).
Natural systems are thus characterized as undergoing open-
ended evolution, showing continual generation of change,
novelty, complexity, and diversity (Taylor et al., 2016).

Unlike in natural systems, computational evolutionary
systems often seem to show rapid change early followed by

stagnation (Lampinen and Zelinka, 2000; Piotrowski, 2014).
After a sufficient time of little to no change, researchers con-
clude that the system has reached an endpoint. However,
there are some potential pitfalls to this conclusion. For one,
not all curves that decelerate are bounded. Power law rela-
tionships, which are common in both biology (Clauset et al.,
2009; May, 2006) and physics (Adams et al., 1993; New-
man, 2005), show rapid changes early on, followed by decel-
erating changes. But power law relationships are not asymp-
totic1; there is no upper limit to the function the way there
is is in, say, a rectangular hyperbola. Secondly, and perhaps
more importantly, the experiments we conduct are, by na-
ture, finite; they run for a specified length of time, and stop.
As a field, we often use these experiments to make predic-
tions about what will happen over much longer, sometimes
indefinite time scales (Sajjad et al., 2016), but these predic-
tions are, by their very nature, extrapolations. Portions of a
curve that look like stagnation when viewed at one scale can
be part of a steep increase when viewed over a larger inter-
val. Further, certain features of an evolutionary trajectory –
for example, a rare event of large magnitude in the midst of
more common events of relatively small magnitude, as pre-
dicted by notions of punctuated equilibrium (Eldregde and
Gould, 1972) – may cause a trajectory to appear bounded,
even when the general pattern is unbounded. We term this
discrepancy the “boundedness illusion”.

Selection can act upon many different features to opti-
mize individuals within a population. Ultimately, these se-
lected features influence Darwinian fitness, which is a mea-
sure of how much genetic information an individual con-
tributes to future generations. Indeed, biologists measure
fitness in terms of contribution of genetic material to future
gene pools, whether directly through competitions over gen-
erations (Wiser and Lenski, 2015) or through features that
are components of fitness but are easier to measure than an

1Here we consider increasing power law functions, where the
exponent is positive. When the exponent is negative, the function
will decrease and may have an asymptote (depending on where the
independent variable is relative to the exponent), as the function
cannot cross 0.



integrated fitness measure in some systems, such as maxi-
mum growth rate in a population (Gerstein and Otto, 2011),
number of young fledged (Velmala et al., 2015), or seeds set
(Remold, 2002). In any population subject to selection pres-
sures stronger than neutral drift, the expectation is that, on
average, fitness will increase from one generation to the next
(Orr, 2009). How fitness changes over time is tightly linked
with whether the evolution in a system is open-ended, or is
itself bounded by an upper value. By focusing our analy-
sis on fitness, we expect to address a fundamental driver of
other aspects of open ended evolution as well.

Many researchers see fitness in existing computational
systems as inherently bounded (reviewed in (Taylor et al.,
2016)). In one sense, there must be a global fitness optimum
within a computational system. Theoretically there are a fi-
nite number of possible organisms, due to limits of computer
memory, if nothing else (Davies, 2004). As such, every indi-
vidual that could exist has an explicit fitness value for a give
computational environment, with the highest such value be-
ing a fundamental bound. However, the eventual theoretical
bound on a population’s fitness may not translate into a prac-
tical bound. The potential search space in non-trivial com-
putational evolutionary systems is vast. If the time it would
take a system to reach its upper boundary of fitness, on aver-
age, is longer than what remains before entropic heat death
of the universe for example, that boundary is likely to be ir-
relevant over experimental time scales. Shorter time scales –
perhaps merely trillions of years – may show unbounded in-
creases in fitness, regardless of any theoretical upper bound
in the system. Similarly, while the whole genomic search
space of individuals may be technically ergodic – any state
is theoretically reachable from any other state – how long
it would take to transition from one particular state to an-
other may make the space practically non-ergodic, even if it
theoretically is so.

To make sense of the vast genetic search space available
in multi-objective optimization, researchers often turn to the
concept of adaptive landscapes. First described by Sewall
Wright in 1932 (Wright, 1932), adaptive landscapes are a
heuristic tool for how traits contribute to the fitness of an in-
dividual. Every point along the landscape represents a com-
bination of trait values. When researchers assign a fitness
value to each one of those points, a multidimensional land-
scape emerges, with peaks and plateaus of high fitness, and
valleys or basins of low fitness. As a population reaches a
fitness peak, its adaptation slows and eventually stops if that
peak is the highest one in the landscape. The fitness land-
scapes associated with non-trivial problems will themselves
be complex, and typically exist in far more than three dimen-
sions. For reasons directly analogous to how improvements
in fitness may be theoretically bounded but practically un-
bounded, so too may a fitness landscape be treated as infinite
even when it is theoretically finite. Beyond even these limits,
natural systems rarely, if ever, exist in perfectly static envi-

ronments; changes in resources, competing populations, and
predators or prey introduce additional variation in the form
of dynamic landscapes, which are beyond the scope of this
paper.

Background
Open-ended evolution
Is there a fundamental difference between evolutionary dy-
namics in populations of DNA-based organisms and evolu-
tionary dynamics in today’s artificial life systems? If so,
this would be important to understand when drawing infer-
ences from computational systems. Moreover, figuring out
the cause of such a difference would provide insight into
the conditions that are necessary and/or sufficient to produce
evolution akin to what we observe in nature. These topics
are the focus of research on open-ended evolution (Taylor
et al., 2016).

In order to address these questions, we must first iden-
tify the dynamics that we expect an open-ended evolution-
ary system to exhibit. Previously, we proposed that these
dynamics can be lumped into five categories: the potential
for continuous meaningful change, the potential for the con-
tinuous production of meaningful novelty, the potential for
unbounded growth in the complexity of ecological commu-
nities, the potential for unbounded growth in the complexity
of individual organisms, and the potential for major evolu-
tionary transitions in individuality (Taylor et al., 2016). We
specify that these dynamics must be “meaningful” to clarify
that it is not sufficient to continuously produce novel indi-
viduals via deleterious mutations that will be rapidly purged
from the population; there must be new genetic information
to count as novel.

Note that “unbounded growth in fitness” is not one of our
categories. It is, however, inextricably interwoven with all
of them. Over the time frames and population sizes com-
monly used in artificial life experiments, unbounded growth
in fitness is sufficient to continuously produce change and
novelty, as it requires at least an occasional introduction
of new, fitter genotypes. Moreover, most ways of filtering
for “meaningful” evolutionary dynamics rely in some way
on fitness. Previously, we suggested an approach in which
genomes are simplified down to sites that affect fitness (i.e.
informative sites), and populations are filtered to only in-
clude genotypes that survive for a (Taylor et al., 2016). Un-
bounded growth in fitness should facilitate the evolution of
new genotypes that pass these filters and are thus able to
contribute to metrics of open-endedness.

Other approaches to quantifying open-ended evolution are
also closely tied to fitness and boundedness. For example,
in Bedau et al.’s Evolutionary Activity Statistics, the popu-
lation is split into taxonomic “components” (Bedau et al.,
1998). The evolutionary activity of these components is
measured by the length of time they persist in the popula-
tion. Evolution in the system being measured can then be



placed into a class of open-endedness based on whether the
diversity and cumulative evolutionary activity of these com-
ponents are bounded or unbounded, and whether new com-
ponents keep being generated. As before, when these statis-
tics are being used on a computational system, it is neces-
sary to filter out noise in some way. This is traditionally
done by comparing runs of the system being measured to
runs of a “shadow” version of that system in which all fit-
nesses are equal. Evolutionary activity in the shadow run is
then subtracted out from that observed in the real run to get
a measurement of non-trivial evolutionary dynamics.

Unbounded growth in fitness is sufficient to create a sce-
nario in which novel components keep appearing and the cu-
mulative activity of components is unbounded. However, it
is not sufficient to guarantee unbounded growth in the coex-
isting diversity of components. There is some disagreement
over how to classify this scenario (Channon, 2003; Kitto,
2006), but it is generally agreed to be at least somewhat
open-ended. Thus, unbounded fitness growth dynamics also
have clear implications for a system’s open-endedness under
this framework as well. Additionally our observations about
boundedness have the potential to apply to boundedness in
the context of evolutionary activity statistics as well.

Ultimately, in this work we focus on open-endedness in
terms of whether populations stop adapting because they
reach optima on the adaptive landscape. We argue that this
is a useful lens through which to examine open-ended evo-
lution because it facilitates comparison to experimental evo-
lution in a laboratory setting while simultaneously having
implications for conventional artificial life conceptions of
open-ended evolution. By bridging these two bodies of re-
search, we can refine our expectations for the behavior of all
evolving systems.

Boundedness
Much of the debate about open-ended evolution concerns
whether evolutionary trends within study systems will con-
tinue forever, or whether there is some eventual limit
(Lampinen and Zelinka, 2000; Piotrowski, 2014). Bio-
logical evolution is commonly assumed to be open-ended,
and therefore unbounded, while most researchers argue that
computational systems are inherently closed because of
an inevitable limit to evolutionary potential (Taylor et al.,
2016).

It is important to note that there is a difference between
whether a system is theoretically unbounded versus practi-
cally unbounded. The number of positive integers is theoret-
ically unbounded: there are an infinite number of positive in-
tegers. The number of positive integers any human will ever
say aloud is theoretically bounded: given that the universe
will eventually end, and that it takes non-zero time to say
a number, there will be numbers never said. But the num-
ber of positive integers some human will ever say may be
practically unbounded at the moment, because we are so far

away from that theoretical upper limit that the existence of
that limit has no discernible impact on the present. Anything
we wish to measure would eventually run into physical con-
straints based on physics the amount of matter and energy
in the universe may be incomprehensibly vast, but it is still
eventually finite, and that places an upper bound on informa-
tion, and therefore complexity (Davies, 2004). Those even-
tual universal physical limits, though, do not always matter
in a practical sense; if we do not expect to come close to
the theoretical limit, does it really matter that such a limit
exists?

Adaptive landscapes
The adaptive landscape is a conceptual tool imported from
evolutionary biology (Wright, 1932). In an extreme sim-
plification, imagine a three-dimensional landscape (see Fig
Conceptual Fitness Landscape?). The x- and y- axes rep-
resent two traits of relevance to evaluating an individual.
In an organic biological system, these could be traits such
as limb length and maximum running speed; in a compu-
tational system they could be traits such as total resources
collected and number of messages sent to other individuals.
The z-axis represents the fitness value associated with that
specific combination of x and y values. When fitness values
are viewed across a range of the x and y values, high fitness
regions rise as hills, while low fitness regions sink as valleys,
resulting in the landscape of the metaphor. Of course, true
fitness landscapes are unlikely to be only 3-dimensional; it
is exceedingly rare for only two traits to influence fitness
(though see (Ganco and Hoetker, 2009) about the use of NK-
landscapes in research). Nevertheless, discussions of the
adaptive landscape are pervasive in the literature in both evo-
lutionary computation (Vassilev and Miller, 2000; Yu and
Miller, 2001; Islam et al., 2012) and evolutionary biology
(Page and Nowak, 2002; Mahler et al., 2013; Martin and
Wainwright, 2013; de Visser and Krug, 2014), with a great
deal of attention paid to how populations can move from a
local optimum to a better optimum despite a region of poor
fitness in between (Covert et al., 2013; Chou et al., 2014;
Kvitek and Sherlock, 2011).

In toy problems, researchers can map out the adaptive
landscape in its entirety. This quickly becomes impracti-
cal as we move from the toy problems on which many ge-
netic algorithms are tested to the much more complex land-
scapes of either non-trivial engineering problems, or the vast
search spaces of biological populations. Unlike in biological
systems, it is often plausible in a digital system to quickly
gather information about the local adaptive landscape by
systematically measuring the impact of all possible one- or
two-step mutations from a particular organism (Covert et al.,
2013). Yet even this local knowledge of the landscape does
not necessarily provide information about the landscape as a
whole; different regions of the landscape may have different
properties. From an artificial life perspective, then, it is less



the case that we can use the adaptive landscape to make pre-
dictions about how evolution will proceed than that we can
use information about how evolution has proceeded – and,
in particular, from different evolutionary run starting at the
same point – to infer the shape of the adaptive landscape.

A further complication of adaptive landscapes is that
while there may be a single global optimum, it is not neces-
sarily the case that an evolving population will settle at that
peak. Imagine two different regions of a fitness landscape:
one has a high but narrow peak, with even points a single
mutation away from this peak having very low fitness; the
other has a plateau, where the highest point is lower than the
highest point of the narrow peak, but there is a fairly wide
neutral network at this high-but-not-highest value. When
there is a non-zero mutation rate, populations will consist of
a cloud of points near each other, even at equilibrium. The
most fit individuals – in the first case, sitting exactly on the
top of the high, narrow peak – will, on average, produce
the most offspring, which will either be on that same point
(clonal offspring), or within a short distance of it (mutant
offspring), tending to center the population on at least a local
fitness peak during periods of equilibrium. The fitness of the
population, therefore, will be based on the aggregate value
in this cloud of points. If a peak is sufficiently narrow, and
the difference in height between a narrow on a broad peak
is small enough, population-level fitness can be optimized at
the shorter, broader peak (Wilke et al., 2001).

Methods
Study System
Avida is a digital evolution software platform (Ofria and
Wilke, 2004; Ofria et al., 2009). In this software, organ-
isms are represented by individual programs, written in an
assembly-like Turing-complete language. These organisms
reproduce themselves by execution of their instructions.
This reproduction, however, is not perfect; the user defines
rates of mutations, such as instructions being replaced by
other instructions, new instructions being added, or existing
instructions being deleted. These mutations produce varia-
tion within the population of organisms. The user also cre-
ates an environment for these organisms, defining whether
certain behaviors are rewarded with additional CPU cycles,
and what the value of this reward is. Organisms have as-
sociated fitness values, which correspond to their expected
rate of reproduction. With mutations as a source of varia-
tion, heredity due to the self-replication of organisms, and
selection imposed by the environment, Avida represents an
instance of evolution, rather than a simulation of it (Pen-
nock, 2007).

Experimental Design
We evolved ten populations of digital organisms in an envi-
ronment called logic-77, in which organisms were rewarded
for performing any of 77 distinct 1-, 2-, or 3-input logic tasks

(excluding the simplest 1-input task, Echo, where organisms
output the same number they received as input). Organisms
could perform any combination of these tasks, repeating any
individual task up to 10 times. We focused on the logic-
77 environment for two main reasons. First, the logic-77
environment is a relatively complex environment, and thus
more likely to have a rugged adaptive landscape – where dif-
ferent high fitness regions are separated by substantial val-
leys of low fitness intermediaries – than a simpler environ-
ment. Secondly, in earlier work we have found evolution
in the logic-77 environment to show substantial variation
across replicate runs (Wiser, 2015), which is an important
element for our questions. We then allowed these initial ten
populations to evolve for 200,000 generations. We subse-
quently selected populations whose evolution appeared to
have plateaued, extracted the most common genotype, and
allowed it to evolve for another 200,00 generations to exam-
ine their long-term dynamics. For these second rounds of
evolution, we ran ten replicate instances of Avida from each
of the ten evolved starting points to assess the variability in
potential outcomes.

Statistical Methods
We fit our data to two distinct mathematical models of fit-
ness change over time. One of the models is a rectangular
hyperbola, of the form

w =
a ∗ t
t+ b

+ 1 (1)

where w is relative fitness (measured fitness divided by an-
cestral fitness), a and b are model parameters, and t is time,
measured here in generations. The other model is a power
law, of the form

w = (b ∗ t+ 1)a (2)

where w is relative fitness (measured fitness divided by an-
cestral fitness), a and b are model parameters, and t is
time, measured here in generations. We fit our models
with the nls() command in R version 3.4.0 (R Core Team,
2016). (Technically, all our models were fit on log(base 2)-
transformed fitness.) We compared our model fits by the
difference in BIC value; note that because both of our mod-
els have the same number of parameters, and are fit on the
same underlying data, the difference in BIC value is for-
mally equivalent to the difference in AIC value in this case.
We used these differences in BIC values to compare model
fits, as outlined in (Raftery, 1995).

Results and Discussion
When separate evolutionary runs start from the same an-
cestor, they experience different mutations. These muta-
tions make it such that the resulting organisms in different
replicates will differ from each other. Sometimes, this vari-
ation has no effect on the phenotype of the organism; at



other times, it does. In this work, we can see that ten repli-
cate trials evolving from the same ancestor reach ten differ-
ent fitness values after 200,000 generations, and they do so
through different trajectories (see Fig.1)

Figure 1: Evolution from original ancestor. Each line repre-
sents one individual evolutionary replicate.

For each replicate, we considered two different models
to explain the fitness trajectory. One of them is a bounded
model (Equation 1); in it, fitness will approach, though never
quite reach, an upper limit. In this case, as t approaches in-
finity, the equation approaches a. The other model (Equation
2) is unbounded; in it, fitness increases decelerate, but do
not have an upper limit. Both of these models have two pa-
rameters, so are of the same complexity as each other. The
specific models considered are taken from a similar analy-
sis of bacterial data (Wiser et al., 2013); the model fits for
this data set are presented in Table 1. We are not here mak-
ing claims that these specific models are the best fit of all
possible models, but merely that they represent examples of
a fundamental difference between a model that is bounded
and a model that is not.

In ten of ten cases, the data is better fit by the bounded
model than by the unbounded model. At first glance, this
would argue that the fitness in these runs is approaching a
maximum value that it will be unable to exceed. However,
that cannot be the case. For one, each organism in each of
the populations is descended from the same original ances-
tor through an unbroken chain of viable organisms. As such,
there is a mutation path from any organism in one popula-
tion to any organism in another population that passes en-
tirely through organisms capable of survival and reproduc-
tion. This means that, in theory, any organism has the poten-
tial to mutate into any other organism in this experiment in

Seed BIC (Power) BIC (Hyper) BIC Difference
1001 62532 54223 8310
1002 64908 47684 17224
1003 57051 42340 14711
1004 74087 67613 6474
1005 73477 67538 5939
1006 69025 64012 5013
1007 64835 49042 15792
1008 48405 36917 11488
1009 60901 57751 3150
1010 57096 46967 10129

Table 1: Model comparison between the bounded (Hyper)
and unbounded (Power) models for 200,000 generations of
evolution from the original ancestor. The BIC Difference
column is the BIC value for the unbounded model minus
the BIC value for the bounded model; positive values indi-
cate a better fit for the bounded model, while negative val-
ues indicate a better fit for the unbounded model. BIC dif-
ferences <10 are considered very strong support (Raftery,
1995). Note that all values reported on the table are rounded
to the nearest integer, leading to rounding differences in the
BIC Difference column

a stepwise fashion. The probability of certain paths will be
very low, as they go through extended sections of poor fit-
ness relative to the existing population, but they are still po-
tential, viable paths. As such, any population which appears
as if it has an asymptote of fitness lower than the highest
population observed must necessarily be capable of reach-
ing the same fitness as that highest observed population, and
thus is not truly bounded by that asymptote.

We further chose to test whether predictions of upper
bounds of fitness were accurate by taking advantage of a
convenient aspect of digital evolution: we were able to take
organisms from the end of the initial 200,000 generations of
evolution and used them as the ancestors for a subsequent
200,000 generations of evolution (see Fig. 2). For each of
the ten intermediate ancestors, we conducted ten replicate
evolutionary runs, for a total of 100 new evolutionary runs.
If the predictions of an asymptote were accurate, for any
given initial run which was better fit by the bounded model,
we would expect none of the subsequent evolutionary runs
from its final organism to exceed that asymptote. This is
not the case. Table 2 shows the predicted asymptote for any
initial run better fit by the bounded model, and the fitness
attained in the subsequent evolution, which exceeds the pre-
dicted maximum in 17 of 100 cases.

The results stemming from these intermediate ancestors
fall into several broad categories. Broadly speaking, these
are cases where 1) the replicates consistently demonstrate
lower fitness than either model predicts; 2) the actual data as
a whole is more consistent with the bounded model, but indi-



1st Seed Pred. Asymptote Highest Fit # Exceed
1001 52.45 46.39 0
1002 75.73 74.80 0
1003 53.21 59.04 3
1004 82.56 75.26 0
1005 97.02 74.47 0
1006 68.55 70.37 2
1007 72.04 74.52 2
1008 47.22 56.23 4
1009 48.46 72.96 6
1010 47.98 45.18 0

Table 2: Comparisons of predicted asymptotes with highest
realized fitnesses. Each listed asymptote is the base 2 log of
the scaled fitness. Highest Fit. denotes the highest fitness
measured in this subsequent 200,000 generations from an
ancestor corresponding to an individual from the end of the
first 200,000 generations of evolution. # Exceed indicates
how many of the ten replicates started from that ancestor
exceeded this predicted asymptote in an additional 200,000
generations of evolution.

Figure 2: Evolution from evolved ancestors. Each line repre-
sents one individual evolutionary replicate. Different colors
represent different ancestors. The colors match those from
1; the run from 1 that produced the red line there is used as
the ancestor for all the lines with the same shade of red in
this figure. Note that in this figure, each ancestor is scaled to
its own starting point. Because both this and 1 have Log 2 y
axes, this scaling simply moves each trajectory down hori-
zontally to start at 0 in this Figure; the magnitude of increase
is unaffected

vidual replicates are highly variable; 3) a substantial fraction
of the replicates exceed even the unbounded model’s pre-
dictions. Thhe third category is the least common of these
– only one of the ten initial populations fall into this cat-
egory – but the data are evenly split between categories 1
(five replicates) and 2 (four replicates).

For replicates in category 1, such as in Fig. 3 A, even
the bounded model from the first 200,000 generations over-
estimates the fitness trajectory in the second 200,000 gen-
erations. In cases like this, the actual populations exhibit
fewer significant increases in fitness in this second phase,
and/or these increases are smaller than expected. The lower
or less frequent increases can sometimes be explained di-
rectly by the increases themselves being small or rare in the
second phase. At other times, the increases in the second
phase can still be substantial, but particularly large or early
gains in the first phase can lead to an expectation of large
and/or frequent increases, beyond what the subsequent data
demonstrate. Particularly in the latter of these cases, later
portions of the evolutionary trajectory appear to better fit the
bounded model than the unbounded model, even though the
fitness of populations is increasing notably; these increases
are, however, less than predicted from the large, early gains,
and thus can give the illusion of unboundedness.

In other cases, such as in Fig. 3 B, the set of the
subsequent runs as a whole are better fit by the bounded
model, but many individual runs are not. Instead, some of
the subsequent runs achieve notably higher fitness than the
bounded model predicts, while others underperform com-
pared to model expectations. Indeed, in some cases, such as
in Fig. 3 D, some of the individual replicates actually bet-
ter fit with the unbounded model, even occasionally exceed-
ing this model’s predictions. This category, then, reflects
circumstances where the average across all replicates from
this intermediate ancestor appears to be better described by
a bounded model, but individual replicates may have very
different results.

In the final category, represented here in Fig. 3 C, not
only do many of the replicates from the intermediate an-
cestor exceed the theoretical asymptote from the bounded
model, they even exceed the predictions of the particular un-
bounded model used. This particular case is a good example
of how happenstance can play a large role in the accuracy of
long-term predictions. The initial run leading to the interme-
diate ancestor had only modest changes in fitness between
80,000 and 200,000 generations, leading to the appearance
of a population having reached a fitness plateau. Yet in only
a very short time after the start of evolution from the inter-
mediate ancestor, one of the replicates experienced a rapid
growth in fitness, rising from a log2 fitness of slightly less
than 40, to one greater than 60 in a few, rapid increases.
Had this rapid increase happened slightly before the end of
the initial phase, rather than slightly after the start of the sec-
ond phase, it would have had a profound impact on the pre-



Figure 3: Example comparisons of model projections to actual data. For each case, the Hyperbolic model is shown in dark red;
the power law model is shown in medium blue. The models are fit through the first 200,000 generation (solid lines), and then
projected for the next 200,000 generations (dashed lines). The thin gray lines show the ten replicates started from the endpoint
of the first phase. Note that the different panels have different y-axes, as the different initial populations reach notably different
fitness levels.



dictions made, and the subsequent analysis of which popula-
tions and replicates exceeded the predictions of one or both
models.

Across the whole set of experiments, many of the sub-
sequent evolutionary runs – 83 of 100 – fail to exceed the
theoretical asymptote predicted by the initial 200,000 gen-
erations of evolution. At first glance, this might seem to be
support these asymptote predictions as being largely correct.
That, however, would be a mistake. Firstly, these predic-
tions are of the maximum fitness the relevant populations
could attain; an example of exceeding this limit is sufficient
to prove that the theoretical limit was incorrect. Secondly,
these asymptotes are predictions of the maximum fitness
these populations would ever attain, given infinite time, if
the pattern of fitness change in the first 200,000 generations
continued. Instead, we are testing these only against an ad-
ditional 200,000 generations; this is a large number of gen-
erations, to be sure, but it is a trivial number compared to
the history of microbes on Earth so far. Thirdly, we have ex-
amples of populations exceeding these theoretical maximum
from five of the ten intermediate ancestors examined. This
is not just a case of a small percentage of predicted limits
being routinely exceeded, but instead a case where fully half
of the predicted limits being exceeded at least once – in a
set of only ten replicates each running, as just mentioned, a
large but non-exhaustive number of generations.

What features of these fitness trajectories may drive the
boundedness illusion? One striking feature is the large step-
wise increases in fitness available in this environment. Any
time a new task is acquired, it has the potential to imme-
diately double fitness; moreover, because tasks can be re-
warded up to ten times per organism, a task performed inside
of a loop could be rewarded up to 210 essentially instantly.
These very large rewards will be far more visible in the fit-
ness trajectory than the more frequent but smaller improve-
ments that come from more efficient replication, which can
lead to the appearance of fitness being unchanging, even
while it is increasing, because it isn’t increasing on the scale
of these rare but large jumps. For example, in Fig. 3 C
– the most extreme case of subsequent evolution exceeding
the theoretical asymptote of the bounded model – one of the
ten replicate extensions underwent a series of very rapid in-
creases in fitness almost immediately, resulting in a more
than 220 gain in fitness in this second phase of evolution. Yet
even so, it is eventually superseded by several other repli-
cates from this same intermediate ancestor that took slower
paths towards even higher fitness regions of the landscape.
For any given replicate, there are points at which it seems
that the population has plateaued – this ancestral population
spent more than 100,000 generations at a fairly consistent
fitness – but these times of apparent stasis do not signify a
lack of future change.

Further, the scale of other changes can obscure real evo-
lutionary improvements. In Fig. 3 C, four of the repli-

cates started from the intermediate ancestor look as if they
have flat trajectories in the second phase. In reality, these
four range from one that declines 1.6% to one that increases
36.6% over the second 200,000 generations. Changes of this
magnitude can be meaningful in biological systems – popu-
lations in the aforementioned E. coli study increased in fit-
ness roughly 60-70% over 50,000 generations of adaptation
– but are invisible in this graph because they are dwarfed by
the rare but exceptionally large effects of task acquisition.

Conclusion
For systems that lack feedback cycles and frequency-
dependence, a global optimal genotype must exist. That
optimum, however, may be so far a randomly chosen start-
ing position that an upper bound does not have an appre-
ciable impact on evolutionary dynamics within the system.
Deceleration in fitness gain can give a strong impression
of fitness growth being bounded by an upper limit, lend-
ing statistical support to models which have an asymptotic
limit. However, subsequent evolution frequently exceeds
these predicted limits, thereby calling into question the util-
ity of such models. Further, the variation in predicted lim-
its across different replicates starting from the same point
reduces the likelihood of many of those limits being real.
Instead, we should be careful to provide evidence of effec-
tive limits to evolution, rather than assume they are present
without adequately demonstrating it.
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