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Abstract

Open-ended evolution requires unbounded possibilities that
evolving entities can explore. The cardinality of those pos-
sibilities thus has a significant implication for the open-
endedness of evolution. We propose that facilitating forma-
tion of higher-order entities is a generalizable, effective way
to cause a “cardinality leap” in the set of possibilities that
promotes open-endedness. We demonstrate this idea with a
simple, proof-of-concept toy model called “Hash Chemistry”
that uses a hash function as a fitness evaluator of evolving
entities of any size/order. Simulation results showed that
the number of individual entities involved in a single repli-
cation event gradually increased over time, indicating evolu-
tionary appearance of higher-order entities. It was also ob-
served that the cumulative number of unique replicating enti-
ties that appeared in evolution increased almost linearly along
time without a bound, presenting a concrete example of open-
endedness achieved by the cardinality leap.

Introduction
Open-ended evolution (OEE) (Taylor et al., 2016) requires
unbounded possibilities that evolving entities can explore.
Such an infinite possibility space can be conceptualized
mathematically as an infinite set of all possible types, on
which the landscape of evolution is constructed. One can
picture that evolving entities collectively search this land-
scape, over an indefinitely period of time, for locations (pos-
sibilities) where they can have a greater chance of continu-
ous existence. It remains unclear, however, how one can
effectively achieve such an infinite possibility space in ar-
tificial life (ALife) models, and how its cardinality affects
evolutionary dynamics.

In this short paper, we revisit an important fact that the
cardinality of possibilities has a significant implication for
the open-endedness of evolution, and propose that facilitat-
ing formation of higher-order entities is a generalizable, ef-
fective way to cause a “cardinality leap” in the set of pos-
sibilities. We first provide a theoretical consideration based
on mathematical concepts of cardinalities, and then demon-
strate the idea using a simple, proof-of-concept toy model
that we call “Hash Chemistry.”

Theoretical Consideration
Mathematical assumptions
Let S be the set of all possibilities of individual entities in an
evolutionary system, such as all possible genotypes or evolv-
ing computer codes. S can be either finite or infinite. For
evolution to be open-ended, S should be infinitely large, but
in all practical implementations of living systems (including
biological and artificial ones) S is technically finite because
evolving entities cannot be bigger than the environment. In
addition, if the entities are symbolically represented (as is
the case in real biological evolution and in most of ALife
models), S is made of discrete entities, and therefore it is
countable.

Here we assume a very simplistic view of evolution that
there is(are) an effectively optimal possibility(-ies) some-
where in S, whose “fitness”, i.e., chance of successful sur-
vival, cannot be surpassed virtually by any other entity. We
do not call this just optimal because, theoretically, one can
construct a landscape on which no optimal type exists, e.g.,
when the fitness is given by 1−1/L where L is the length of
the entity’s description. But even in such cases, the fitness
resolution limit coming from limitations in the laws of the
world (e.g., quantum limit) makes two types indistinguish-
able if their Ls are very large. Those indistinguishable types
are both effectively optimal.

Evolution can be visualized as a collective search process
in S to find such an effectively optimal entity. Once the evo-
lution finds one, that entity will dominate the system, and the
open-endedness of evolution will no longer be exhibited be-
cause there will be no more adaptive types discovered by the
evolutionary process. The question of our interest, then, is
if an evolutionary system is destined to reach this final state,
and if so, if there is any workaround available to help the
system avoid reaching this destination so that it can remain
open-ended.

Hurdle to open-endedness
Assuming that S is countable, all the possibilities can be
mapped onto a set of natural numbers (1, 2, 3, ...) in some
arbitrary order. The effectively optimal entity is also located



somewhere in this set of numbers. Let no be the number
that corresponds to that entity. If S is finite, it is obvi-
ous that there is no way evolution could produce an indefi-
nitely long sequence of search history continuously produc-
ing novel types without hitting no, and therefore, the evolu-
tion cannot be open-ended. Even if S is infinite, the count-
ability assumption of S implies that every single entity in S
will be visited eventually at a finitely distant point in time
in the future if the entities of S are enumerated. Since open-
ended evolution is essentially a parallel process of enumerat-
ing novel possibilities over time, open-ended evolution will
eventually hit no at some point in the future, which ironi-
cally makes the process not open-ended. These arguments
indicate that evolution cannot be truly open-ended if S is
finite or even countably infinite.

There are several different ways to respond to the some-
what daunting conclusion derived above. One is to accept
the countability of S but argue that the size of S is very
large or that the time until enumeration hits no is very long,
so that evolution within such bounds can still look very rich
and open-ended. This is a perfectly logical, reasonable view,
and it is certainly possible that the actual evolution of life on
Earth is simply in the middle of a finitely long evolutionary
path.

Another way of response is to assume an uncountably
infinite set for S. This approach is equivalent to adopting
continuous-valued representations for descriptions of evolv-
ing entities. Since enumeration of such continuous values
is not possible, true open-ended evolution is logically possi-
ble within this setting. This view is, however, not consistent
with the mechanisms of biological evolution as we know it
where entities are encoded in discrete symbols. It also has a
risk to fall into a naive conclusion that any chaotic dynam-
ical systems are open-ended evolutionary systems. While
it may be true mathematically, such a simplistic conclusion
may not be helpful in making advance in ALife research on
OEE.

Higher-order entities and cardinality leap
Here we take yet another approach to the above issue, which,
we believe, is generalizable and more useful for research on
OEE. Specifically, we consider a way to expand the cardinal-
ity of the possibility set by facilitating formation of higher-
order entities, i.e., combinations/coalitions of multiple indi-
vidual entities in S.

Mathematically, a higher-order entity can be defined as a
multiset (a set in which multiple copies of an identical entry
are allowed) of entities of S. For example, with S being a
set of chemical elements, molecules like O2 and H2O are
higher-order entities, represented by multisets {O,O} and
{H,H,O}, respectively. Other examples include a multi-
set of molecules contained within a micelle, a multiset of
organelles contained within a eukaryotic cell, symbiosis of
multiple organisms, etc. It can be argued that many, if not

all, of the major transitions in evolution (Maynard-Smith
and Szathmáry, 1995; Szathmáry, 2015) can be described
mathematically as formation of such higher-order entities
(i.e., multisets of individual entities).

An important mathematical fact we want to point out is
that the formation of higher-order entities naturally causes a
“cardinality leap” in the possibility set. Let S∗ be the pos-
sibility set of higher-order entities, i.e., the set of all mul-
tisets of individual entities in S. Each higher-order entity
in S∗ can be mapped onto a sequence of non-negative in-
tegers whose components represent numbers of individual
entities of S that are contained in the multiset. For exam-
ple, with S = {H,He,Li,Be,B,C,N,O, F,Ne, . . .}, O2

and H2O are mapped onto (0, 0, 0, 0, 0, 0, 0, 2, 0, 0, . . .) and
(2, 0, 0, 0, 0, 0, 0, 1, 0, 0, . . .), respectively. Given that the
numbers of individual entities that appear in the multiset are
theoretically unbounded, the size of S∗ is infinite. If S is
finite, S∗ is the set of |S|-dimensional non-negative integer-
valued vectors, and thus S∗ is countably infinite. Or, if S is
already countably infinite, S∗ is the set of infinitely long se-
quences of non-negative integers, whose cardinality equals
the cardinality of real numbers (i.e., uncountably infinite) by
the diagonal argument (Simmons, 1993).

Note that in either case, the cardinality of possibility sets
makes a fundamental leap (from finite to countably infinite,
or from countably infinite to uncountably infinite). Such a
cardinality leap would greatly promote the open-endedness
of evolutionary processes. In particular, if the original pos-
sibility set S is already countably infinite, the formation
of higher-order entities can achieve an uncountably infinite
possibility space, creating a theoretical possibility of true
open-ended evolution in it, even if the individual entities in
S are represented in discrete symbols.

Proof of Concept: Hash Chemistry
The theoretical consideration given in the previous section
may give us some hope, but it does not provide concrete
guidelines about how one can construct an artificial evolu-
tionary system that has the potential to form higher-order
entities and thereby exhibit OEE. In this section, we present
a simple toy model to demonstrate how it could be done, at
least in a very primitive form.

General architecture
In creating artificial evolutionary systems that can facilitate
formation of higher-order entities, one technical challenge is
how to design a mechanistic, universal means that can eval-
uate the level of success of entities of any arbitrary size.
The real laws of physics/chemistry/biology apparently have
no issue on this, because they are fundamentally bottom-
up and fully distributed. However, most of the existing
evolutionary models assume a typical genotype-phenotype
mapping, evaluating the fitness of each individual type sep-
arately. Some evolutionary models adopted more elabo-



rated methods such as context/environment dependence or
multilevel selection, but the fitness evaluation mechanisms
in those models are not flexible enough to be applied to
S∗ in the context of this study. Constructing a physi-
cally/chemically/biologically plausible mechanism for uni-
versal fitness evaluation of any higher-order entities would
probably require a combinatorially large amount of design
effort.

Because solving the above challenge is not part of our ob-
jectives, we circumvent the problem by throwing it at Deus
ex Machina available in most computational environments,
a.k.a. the hash function. A hash function takes any hash-
able data and returns a hash value that is deterministically
assigned to the given data, which is perfect as a quick-and-
dirty substitute of the universal fitness evaluator for lazy
modelers (like the author of this paper).

With the power of this hash function, one can build a sim-
ple evolutionary model, which we call “Hash Chemistry,” in
the following general architecture that follows a typical Ar-
tificial Chemistry framework (Dittrich et al., 2001; Banzhaf
and Yamamoto, 2015):

1. Define a set of possibilities of individual entities (S).

2. Define a spatial domain in which entities reside and inter-
act. This domain can be a continuous Euclidean space, a
discrete lattice or network, or any other space, as long as
one can represent proximity of entities on it.

3. Initialize the system by placing some individual entities
in the spatial domain.

4. Using any method of choice, extract a multiset of individ-
ual entities that are spatially close to each other (this could
be just a set of one entity as well). This multiset is now
a higher-order entity whose behavior is to be determined
below.

5. Apply the hash function to the multiset extracted above
(typically represented as a sorted list of the types of indi-
vidual entities in it). The returned hash value should be
normalized somehow to an interpretable fitness value f .

6. Based on f , do one of the following: (a) Add a copy of
the multiset to the space (replication). (b) Remove the
extracted multiset from the space (death). (c) Do neither.

7. Repeat 4–6.

In addition to the above steps, one may also include
other factors such as spatial movement of entities, stochastic
changes of entity types (mutation), and the carrying capac-
ity of the space, to make the dynamics more plausible and/or
practical.

Specific implementation
We implemented a specific version of Hash Chemistry in
Wolfram Research Mathematica. The following model set-
tings were adopted:

• The possibility set of individual entities (types) are
natural numbers ranging from 1 to 1,000, i.e., S =
{1, 2, . . . , 1000}.

• The space is a two-dimensional continuous unit square
with cut-off boundaries, i.e., entities are not allowed to
move out of the boundaries.

• The initial configuration is made of 10 individual entities
of randomly chosen types, randomly distributed within
the space.

• Each simulation is run for 2,000 iterations (time steps).

In each iteration, the following steps are taken to update
the system’s state:

1. Move each of the individual entities randomly by adding
to its spatial position a small randomly oriented vector
whose length is sampled from a half-normal distribution
with σ = 0.15.

2. For each of the positions of individual entities, do the fol-
lowing:

(a) Create a set N of individual entities that are of close
distance (0.05 or less) from the focal position.

(b) Choose a random subset s of N by randomly select-
ing k entries from N , where k is a random integer in
{1, 2, . . . , |N |}. This represents a multiset of entity
types, i.e., a higher-order entity whose success in repli-
cation and/or survival is to be determined below.

(c) With probability 1/|s| (this is to standardize the aver-
age probability of updating per entity per unit of time),
do the following:
• Create a sorted list of types of the individual entities

in s.
• Calculate the fitness f of s by applying Mathemat-

ica’s Hash function (Wolfram Research, 2018) to the
above list. The output is mapped to a [0, 1) fitness
range by computing (h mod m)/m, where h is the
output of Hash (m = 100, 000 for the results shown
here).

• With probability 1−f , delete all individual entities in
s from the space. (death)

• With probability f(1− |N |/dmax), where dmax is the
maximum density of entities (dmax = 100 for the re-
sults shown here), add copies of all individual entities
in s to the space. (growth)

3. For each of the individual entities, change its type to a
type randomly sampled from S with probability 0.01.

4. Randomize the order of individual entities.



Figure 1: Sample simulation run of Hash Chemistry. Each
frame shows a snapshot of the system at a certain time point
(from top left to bottom right: t = 30, 100, 300, 1000).
Each individual entity is represented as a dot in the space,
with a color showing its entity type. A movie of this sim-
ulation run is available on YouTube at https://youtu.
be/fVwUJ7pdPWY.

Results
This Hash Chemistry model was built only as a proof of con-
cept, and a systematic evaluation of its dynamics is outside
the scope of this short paper. Here we anecdotally present an
illustrative example of a typical simulation run. We have run
several independent simulations so far, and the observations
indicate that the simulation results are qualitatively similar
and fairly robust.

Figure 1 shows several snapshots of the system’s state
and its spatio-temporal development over time in one sim-
ulation run (a movie of this simulation run is available
on YouTube at https://youtu.be/fVwUJ7pdPWY).
Figure 2 presents time series of (i) maximum/average fitness
values of individual entities that were successfully repli-
cated, and (ii) the number of replicated individual entities.
The former quickly increased and converged at steady state
values, while the latter gradually increased over time. These
are typical simulation results showing the evidence of adap-
tation, nothing particularly different from what have been
reported with other evolutionary models in the literature.

However, Figure 3 tells a rather different story. In these
plots, it is shown that the number of individual entities that
were involved in a single replication event gradually in-
creased over time. This means that the individual entities
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Figure 2: Evidence of adaptation going on in Hash Chem-
istry. Top: Maximum and average fitness values of repli-
cated individual entities. Maximum fitness quickly increases
and stays nearly at 1.0. Bottom: Number of individual enti-
ties replicated in each time step.

gradually became more and more replicated together with
others, behaving as higher-order entities. This can be inter-
preted in that this evolutionary system continuously discov-
ered slightly higher fitness values for increasingly higher-
order entities in S∗ on the nontrivial fitness landscape de-
fined by the hash function. This kind of spontaneous in-
crease in the order of evolving entities is quite unique to this
Hash Chemistry model.

The most striking finding is shown in Figure 4, where the
cumulative numbers of unique entity types that have ever ap-
peared in the course of the simulation run are plotted. If only
the types of individual entities are counted (Fig. 4 top), the
number grows following a typical S-shaped growth curve,
quickly exhausting all the possible types (1,000) in the early
stage of evolution. This corresponds to the inevitable conse-
quence of evolutionary enumeration of possibilities. In this
view, open-ended evolution is not possible. However, if the
types of higher-order entities are counted (Fig. 4 bottom),
the number of possibilities continues increasing almost lin-
early along time, far above the number of possibilities of

https://youtu.be/fVwUJ7pdPWY
https://youtu.be/fVwUJ7pdPWY
https://youtu.be/fVwUJ7pdPWY


0 500 1000 1500 2000
0

20

40

60

80

Time

M
ax
im
um

#
of
en
tit
ie
s

in
ea
ch
re
pl
ic
at
io
n
ev
en
t

0 500 1000 1500 2000
0

1

2

3

4

5

6

Time

A
ve
ra
ge

#
of
en
tit
ie
s

in
ea
ch
re
pl
ic
at
io
n
ev
en
t

Figure 3: Maximum (top) and average (bottom) numbers of
individual entities involved in each replication event.

individual entities. This is made possible by the cardinality
leap caused by formation of higher-order entities. Namely,
the cardinality leap results in an unbounded number of com-
binations of individual entities, and such higher-order enti-
ties can and do appear as the system explores and discovers
them as more fit entities in the course of evolution.

Conclusions
In this short paper, we emphasized the significance of for-
mation of higher-order entities as a generalizable mecha-
nism to induce a cardinality leap in the possibility set, nat-
urally facilitating open-ended evolution. This idea was il-
lustrated with a concrete computational model, Hash Chem-
istry, which adopted a general-purpose hash function as a
means to evaluate fitness of evolving entities of any size
or order. Numerical simulations successfully demonstrated
evolutionary appearance of higher-order entities, and more-
over, unbounded increase in the cumulative number of novel
types produced in evolution, even if the possibilities of indi-
vidual entity types were finite.

These results constitute a concrete, operationalized exam-
ple of cardinality leaps through formation of higher-order
entities, suggesting that it is indeed possible to achieve open-
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Figure 4: Cumulative numbers of unique entity types that
have ever appeared in the course of simulation. Top: Num-
ber of individual entity types, which saturates at the maxi-
mum value (1,000). Bottom: Number of higher-order entity
types, which continues to grow almost linearly along time.

ended evolution in a relatively simple ALife model frame-
work. The present work remains at an anecdotal proof-of-
concept level, and therefore a more systematic, quantitative
evaluation of the model and its dynamics will be among our
future studies. We also plan to explore how the idea of car-
dinality leaps could be introduced to other ALife models,
including our recent evolutionary swarm models (Sayama,
2011, 2018).
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