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Abstract

Is undecidability a requirement for open-ended evolution
(OEE)? Using algorithmic complexity theory methods, we
propose robust computational definitions for open-ended evo-
lution and adaptability of computable dynamical systems.
Within this framework, we show that decidability imposes
absolute limits to the growth of complexity on computable
dynamical systems up to a logarithm of a logarithmic term.
Conversely, systems that exhibit open-ended evolution must
be undecidable, establishing undecidability as a requirement
for such systems.

Complexity is assessed in terms of three measures: sophis-
tication, coarse sophistication and busy beaver logical depth.
These three complexity measures assign low complexity val-
ues to random (incompressible) objects. We conjecture that,
for similar complexity measures that assign low complexity
values, decidability imposes comparable limits to the stable
growth of complexity and such behaviour is necessary for
non-trivial evolutionary systems.

Finally, we show that undecidability of adapted states im-
poses novel and unpredictable behaviour on the individuals
or population being modelled. Such behaviour is irreducible.

Theoretical Framework
A dynamical system is one that changes or evolves over
time. Deterministic computable dynamical with discrete
time are a class of systems where the initial state and, given
the respective time, future states are known without gaps
of information. Since their formalization by Church and
Turing, the class of computable systems have shown unpre-
dictability (Turing, 1936).

A deterministic discrete space evolutionary system is
defined by an evolution function of the form Mt+1 =
S(M0, t, E), where M0 is the initial state of the system,
E is the environment and t is a natural number called
the time variable of the system. The sequence of states
M0,M1, ...,Mt, ... is called the evolution of the system.

∗This is an extended abstract of an article submitted and ac-
cepted for oral presentation at ALife XV (July 4-8, 2016, Cancun,
Mexico).

For this class of systems we define open-ended evolution
(OEE) as a process that has the property of producing fam-
ilies of objects of increasing complexity. This definition is
based on two observations: open-ended evolutionary sys-
tems tend to produce families of objects of increasing com-
plexity (Bedau, 1998; Auerbach and Bongard, 2014) and,
for a number of complexity measures, the objects belong-
ing to a fixed level of complexity are finite, implying that
complexity increase over time is sufficient and necessary to
keep producing new objects. In order to differentiate be-
tween trivial and interesting OEE evolutionary systems, we
propose a stronger definition OEE called strong OEE, where
we place restrictions to the drop on complexity that a system
can display.

Our characterization of adaptation is based on a descrip-
tive complexity inequality. Given a computable dynamical
system that models an organism (or population), if an object
is adapted then it must produce an acceptable approxima-
tion of its environment (Zenil et al., 2012) with a bounded
information deficit, which is the amount of information that
we need to describe the environment from a complete de-
scription of the object. Formally, it must meet the following
inequality:

K(E|M) ≤ ε,

where M is the adapted object, E is the environment and
K(E|M) is the conditional algorithmic descriptive com-
plexity (Kolmogorov, 1965; Chaitin, 1982) of E relative to
M . Finally, we define a program such that p(M) = E with
|p| ≤ ε as the behaviour of M .

Our characterization is robust given that the presented in-
equality bounds the amount of information needed to de-
scribe any computable method of obtaining E from M , be
either a computable theory that describes adaptation or a
computable model for an organism that tries to find solu-
tions for E.

Finally, we say that an evolutionary system S converges
weakly to E with degree ε for the initial state M0 if there
exist an infinity of times δi, called adaptation times, such
that

K(E(M0, δi)|S(M0, E, δi)) ≤ ε.



Results
Weak convergence is decidable if there exist a computable
function δ : i 7→ δi where δi are the adaptation times of the
system. This is equivalent to the existence of an algorithm
that decides if the system at the state Mδi is adapted.

The next theorem states that decidability imposes a tight
limit to the growth of complexity of strong OEE evolution-
ary systems.
Theorem 1. Let S(M0, E, t) be a weakly converging system
with adaptation times δ1, ..., δi, ... . If csoph, depthbb (An-
tunes and Fortnow, 2003) or sophc (Koppel, 1988), for a
fixed c, show strong OEE that grows faster thanO(log log i)
at an infinite subsequence, then the mapping δ : i 7→ δi is
not computable.
Furthermore, the following corollary shows the inexistente
of partial solutions to decidability.
Corollary 2. If S(M0, E, t) is a weakly converging system
with adapted states M1, ...,Mi, ... that show strong OEE
with speed greater than O(log log i) at an infinite subse-
quence for the three stated complexity measures, then the
mapping δ : i 7→ δi is not even semi-computable.

The upper bound to the complexity that decidability im-
poses to OEE is extremely slow at double logarithm over the
index of adapted states. If we disregard this increasingly in-
significant growing rate, we can say that strong open-ended
evolution implies undecidability of the adapted states.

Moreover, as the next theorem shows, undecidability im-
plies that the behaviour of the adapted states must also be
undecidable, establishing a path for emergent behaviour that
cannot be predicted given a full description of the initial state
and the behaviour of the system.
Theorem 3. Let S be a non cyclical computable system with
initial state M0, E a dynamic environment and δ1, ..., δi, ...
a sequence of times such that for each δi there exist a to-
tal function pi such that pi(Mδi) = E(δi). If the function
p : i 7→ pi is computable, then the function δ : i 7→ δi is
computable.

The sequence of behaviours pi is irreducible given that
the sequence does not posses a shorter description than it-
self, otherwise it would be computable. These behaviours
must also novel since they must be different enough from
one to another in order to have irreducibility. We believe that
these results can be extended to similar complexity measures
that grows slower on random or incompressible objects. For-
mally:
Conjecture 4. Computability bounds the growing complex-
ity rate to that of an order of the slowest growing infinite
subsequence with respect to any adequate complexity mea-
sure C.

Conclusions
We have presented a formal and general mathematical model
for adaptation within the framework of computable dynami-

cal systems. This model exhibits universal properties for all
computable dynamical systems, of which Turing machines
are a subset.

Among other results, we have given formal definitions
of open-ended evolution (OEE) and strong open-ended evo-
lution. We also showed that decidability imposes univer-
sal limits to the growth of complexity of computable sys-
tems as measured by sophistication, coarse sophistication
and busy beaver logical depth. Furthermore, as a direct im-
plication theorem 1, undecidability of adapted states and un-
predictability of the behaviour of the system at each state is a
requirement for a system to exhibit strong open-ended evo-
lution (up to a O(log log t) term) with respect to the com-
plexity measures known as sophistication, coarse sophisti-
cation and busy beaver logical depth, establishing a rigor-
ous proof that undecidability and irreducibility of future be-
haviour is a requirement for the growth of complexity among
the class of computable dynamical systems.
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