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Abstract 

Biological and social systems are considered as a flux of 
interacting components that transiently participate in 
interactions with other system components as part of the 
system. This suggests that any simulated system undergoing 
open ended evolution should be considered in the context of a 
variable environment that provides elements for the system and 
acts as a sink for discarded elements of the system. It is argued 
that any such system can be seen as a computational system 
that tries to predict its own environment. Furthermore it is 
argued that such systems must have an infinite representation 
equivalent of Turing machines. Consequently the level of 
infiniteness of such systems must be equal to the infiniteness of 
the category of pre-orders (i.e. the category that is a smallest 
representation of Turing machines). Finally, the reconciliation 
of the practical finiteness and principial infiniteness of these 
systems and implications of the approach taken here are 
discussed.  

Extended Abstract 

Biological and social systems undergo long-term evolution 
and lead to a large variety of evolved adapted systems. These 
systems exist in the context of variable environment and they 
can be seen as a flux of components that originate from the 
environment, end up in the environment, and transiently 
participate in interactions with other system components as 
part of the system (Alberts et al, 2008; Luhmann, 1996). 
 This suggests that open ended evolution simulations should 
be considered in the context of a variable environment, where 
individuals must pick resources from the environment and 
discard their waste into their environment. The resources are 
used to maintain the existence of the individual. The 
environment for any individual is made of the other 
individuals and possibly other environmental elements, some 
of which may be used as resources.  

An individual in natural systems is made of many 
components that interact and through patterns of such 
interactions deliver the behaviors of the individual. For 
example, proteins and other molecules interact in cells, cells 
interact in organisms, and organisms interact in social 
systems. The existence of an individual can be seen as the 
maintenance of these interactions between components in 
accordance with individual specific rules about what 
interactions and patterns of interactions are useful and what 
are not useful for the individual. For example, a cell may pick 
up a range of molecules from its environment, some of which 

are useful (e.g. sugar) and some of which are not useful (e.g. 
penicillin for a bacterium). Somehow the cell must be able to 
select those molecular interactions that are useful for it (e.g. 
the use of sugar to generate energy storing molecules) and 
eliminate that ones that are harmful (e.g. by breaking up 
penicillin molecules before they can block the activity of their 
target proteins) (Blair et al 2015). 
 This implies that in order to simulate real-like open ended 
evolution the simulation of the behavior of individuals in 
terms of interactions between components of the individuals 
is important. Furthermore, the existence of individuals should 
depend on the production of such behaviors, i.e. the existence 
of individuals should be checked by considering their 
behaviors and assessing whether these behaviors are 
consistent with the existence of the individual. 
 The above reasoning implies that biological and social 
systems somehow through their behaviors decide which 
elements of the environment are appropriate and which are 
not for the maintenance of their existence. For example, cells 
operate the right kind of channel molecules to pick up the 
right kind of molecules and ions from their environment. 
When the environment changes and one nutrient (e.g. an 
amino-acid) is replaced by another as abundant resource, the 
cells adapt and change their molecular pick-up behavior in 
order to use the available resource (Hottes et al 2013). 
 To be able to adapt to environmental changes these systems 
must in some way predict their environment. For example, the 
cell that is ready to pick up one kind of nutrient from its 
environment experiences that the expected nutrient is not 
available and it also experiences other molecular interactions 
that may indicate the presence of an alternative nutrient. In 
response the cell changes the molecules exposed on its 
membrane that are in charge of facilitating the pick-up of 
nutrients. Such changes in the molecular composition of the 
cell membrane effectively predict what the cell expects to find 
in its environment. 
 Thus in a sense the natural systems compute their 
expectations about their environment. This computation 
happens through the interactions of their components. This 
means that in order to maintain their own existence these 
systems behave as autocatalytic systems that catalyze the 
reproduction (or recruitment) of the correct components and 
interactions within themselves and they do this through a self-
referential computation aimed to predict their environment 
(Andras, 2011). 



 The self-referential computation requires providing 
references to past interactions and components. This can be 
satisfied if all patterns of interactions (reference-able 
computations) can be represented by component (e.g. 
molecules that formed through corresponding molecular 
interactions), and if all patterns of components (reference-able 
data) can be represented by ongoing component interactions 
(e.g. molecular interactions which can happen only if the 
referenced pattern of molecules was present earlier). This 
circular referencing may appear irresolvable; however there is 
a mathematical formalism that can provide a solution, which 
is the theory of recursive domain equations (Pierce, 1991). 
 To put this more abstractly, systems that can produce open 
ended evolution in nature must provide a practical realization 
of a solution of the following recursive domain equation: 

R  A+[RR] (1) 

where R is a domain (e.g. a set or a category), A is a part of R 
and [RR] are all transformations of R to R, i.e. functions 
from R to R. In this formalism the patterns of components that 
are represented by A are not part of the system, but these exist 
only in the environment of the system. 
 The simplest non-empty solution of the recursive domain 
equation is the category of pre-orders, which is also a model 
of the -calculus (Pierce, 1991). This indicates that any 
natural system that is able do sustain open ended evolution is 
such that it constitutes a representation of a solution of 
equation (1) and consequently it is also equivalent with a 
representation of the -calculus or equivalently of Turing 
machines. This means that these systems can (at least in 
principle) compute anything computable and predict their 
environment as much it is predictable. 
 However, given the constraint of finite time available for 
computations about the environment these systems 
approximate in practice the prediction of their environment. 
Their ability to approximate their environment precisely 
depends on how efficient they are in terms of implementation 
of the solution of the recursive domain equation. 
 Thus in principle any system that aims to simulate the open 
ended evolution that can be observed in nature must be able to 
produce a representation of a non-empty solution of equation 
(1). This means that these systems must be at least of the size 
of the category of pre-orders, which is comparably infinite as 
the category of sets, which is more infinite than the set of real 
numbers. 
 In order to deal with apparent difficulty of representing so 
infinite systems let us consider first real systems, such as cells 
or social systems. While the above argument implies that the 
cell must be an infinite system, the reality is that it is made of 
a finite set of molecules and molecular interactions at any 
time. To accommodate the infiniteness requirement, let us 
consider the life of a bacterial cell. The cell emerges after a 
division of another bacterial cell and it lasts until its own 
division into daughter cells. However, if we consider that the 
cell is in fact the continuation of the parent cell and its 
daughter cells are continuations of the cell itself, and take the 
whole life trajectory of the continuations of the cell, both 
backward and forward, we find that we are dealing with an 
infinite system. The number of kinds of molecules involved in 
cells is also similarly infinite, given the possible variations of 
molecules (e.g. consider the huge DNA molecules). So, while 

a given cell at any time provides a finite snapshot of the 
infinite cell system, considering the cell system in its totality, 
the system is indeed infinite (Andras, 2011). 
 This means that in order to be able to simulate a real-like 
system with open ended evolution the system must be able to 
extend infinitely in principle and the simulation at any time 
should provide a finite snapshot of the infinite system, which 
represents a solution of the recursive domain equation. The 
key aspect is that the system must be extendable infinitely into 
a representation of the -calculus or equivalently of Turing 
machines. 
 Turning this around, if we consider a system that explicitly 
or implicitly implements -calculus then we should be able to 
use this system to produce a simulation of open ended 
evolution. For example, consider a set of Turing machines that 
operate on their own input strings, and an environment made 
of random input strings of random lengths. Producing certain 
outputs in their stack string (i.e. patterns of symbols) could be 
required for the survival of individuals. The individuals could 
crossover their input strings and pick up an appropriate input 
string from the environment and merge this according to some 
pattern with their existing input string (the picked up input 
string could be a part of the input string of another 
individual). The appropriate input string from the environment 
could be determined by a string match with a part of the 
contents of the stack string. Distinguishing between different 
variants of the Turing machines might be complicated, but 
according to the reasoning above the result should be a 
simulation of open ended evolution if the various rules of the 
system are appropriately set. An alternative, more visual 
example could be the consideration of Wolfram’s rule 110 for 
one-dimensional cellular automata (Wolfram, 2002) in 
combination with random input strings of black and white 
squares. Again production of certain patterns would be 
required for survival and strings of black and white squares 
would constitute the environment from where automata 
individuals could pick up new parts for their input strings. 
Individuals could combine their input strings with strings 
taken from the environment. The generation of offspring 
would involve crossover of input strings of parents and 
mutation of the input string of the new individual. Given that 
rule 110 implements a Turing machine it is expected that this 
system would also lead to a simulation of open ended 
evolution (Wolfram, 2002). However, again the determination 
of species identity of individuals might be complicated 
(although some form of string matching algorithm similar to 
BLAST might work well).  
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